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ABSTRACT 26 

 We quantitatively examine the relative importance of uncertainty in emissions and 27 

physicochemical properties (including reaction rate constants) to Northern Hemisphere (NH) and 28 

Arctic polycyclic aromatic hydrocarbon (PAH) concentrations, using a computationally-efficient 29 

numerical uncertainty technique applied to the global-scale chemical transport model GEOS-30 

Chem.  Using polynomial chaos (PC) methods, we propagate uncertainties in physicochemical 31 

properties and emissions for the PAHs benzo[a]pyrene, pyrene and phenanthrene to simulated 32 

spatially-resolved concentration uncertainties. We find that the leading contributors to parametric 33 

uncertainty in simulated concentrations are the black carbon-air partition coefficient and 34 

oxidation rate constant for benzo[a]pyrene, and the oxidation rate constants for phenanthrene and 35 

pyrene. NH geometric average concentrations are more sensitive to uncertainty in the 36 

atmospheric lifetime than to emissions rate. We use the PC expansions and measurement data to 37 

constrain parameter uncertainty distributions to observations. This narrows a priori parameter 38 

uncertainty distributions for phenanthrene and pyrene, and leads to higher values for OH 39 

oxidation rate constants and lower values for European PHE emission rates. 40 
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 41 

INTRODUCTION 42 

Polycyclic aromatic hydrocarbons (PAHs) are mutagenic and carcinogenic environmental 43 

contaminants
1
. As persistent organic pollutants (POPs) that are transported through the 44 

atmosphere across national boundaries after emission, PAHs are regulated internationally by the 45 

Convention on Long-Range Trans-boundary Air Pollution (CLRTAP)
2
. Despite regulatory 46 

efforts, PAHs continue to be transported via the atmosphere to the Arctic
3–6

, far from source 47 

regions. In this study, we quantitatively examine the relative importance of emissions and 48 

physicochemical parametric uncertainty to Northern Hemispheric (NH) and Arctic PAH 49 

concentrations, using efficient numerical uncertainty techniques applied to the global-scale 50 

chemical transport model (CTM) GEOS-Chem. 51 

The pathways by which PAHs reach the Arctic have been studied with numerical models 52 

of varying complexity
7–13

. However, our understanding of these pathways is limited by 53 

substantial uncertainty associated with the physicochemical parameters (including reaction rate 54 

constants, partition coefficients and energies of phase change) that govern the atmospheric fate 55 

of PAHs.  Some physicochemical parameters representing PAH behavior, such as oxidation rate 56 

constants and black carbon partition coefficients, are poorly constrained by measurements or 57 

several have not been measured directly
14–16

. For some PAHs, e.g. phenanthrene (PHE; three 58 

ring), physicochemical parameters important to their atmospheric fate have been relatively more 59 

studied than for the larger PAHs like benzo[a]pyrene (BaP; five ring) and pyrene (PYR; four 60 

ring). Even for PHE, measurements of physicochemical parameters can differ by more than a 61 

factor of two
15

. Limited knowledge of emissions sources and associated uncertainty also 62 
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contributes to uncertainty in atmospheric transport, as emissions factors for some processes (e.g. 63 

waste incineration, biomass burning) can vary by orders of magnitude
17

. 64 

Model uncertainty has been studied for multimedia fate models of persistent organics
18–

65 

20
. Multimedia model analyses have found that chemical properties have a larger influence on 66 

persistence and long-range transport potential than model parameters such as spatial scales, 67 

media heights/depths, and land and water surface fractions
18

. Detailed Monte Carlo analyses 68 

have been performed for multimedia models, finding that emissions and degradation constants 69 

were the most influential sources of uncertainty in DDT concentrations
19

 and that partition 70 

coefficients and reaction rate constants accounted for more than half of the uncertainty in 71 

mercury concentrations in air and the surface ocean
21

.  72 

PAHs have been studied using finer-scale models at both the global and regional 73 

scales
7,12,13,22,23

. Through comparison to spatially and temporally fine-scale measurements, these 74 

studies show that highly spatially resolved models can be useful in predicting the pattern of 75 

exposure to PAHs, an important factor for human health impacts. While multimedia models are 76 

computationally efficient and thus can quantitatively examine relative influences of parameters 77 

on uncertainty, they lack the spatial resolution and ability that CTMs possess to resolve the 78 

episodic nature of atmospheric transport.  79 

Monte Carlo-type methods like those used for multimedia models
19

 can be prohibitively 80 

computationally expensive for more finely spatially resolved models, as they require on the order 81 

of thousands of samples for detailed analyses. Individual simulations run with complex 82 

atmospheric CTMs such as GEOS-Chem can require hours to days of computational time, 83 

leading to years for the full Monte Carlo analysis. Thus, first-order parameter sensitivity tests are 84 
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often used to characterize uncertainty in spatially resolved models
12,23,24

.   85 

One previous study
24

 reported quantitative estimates of the relative importance of 86 

physicochemical parameter uncertainty and emissions uncertainty in PCB153 and α-HCH 87 

simulations by the large-scale, spatially-resolved (15°x15°) BETR Research model using a first-88 

order error propagation method.  Though first-order error propagation methods are 89 

computationally cheaper than Monte Carlo analysis, they do not directly quantify the effect of 90 

parameter uncertainty interactions. Polynomial chaos (PC)-based methods can greatly reduce the 91 

computational cost of uncertainty propagation for CTMs compared to Monte Carlo methods, 92 

while approximating the resulting uncertainty distributions more closely than first-order methods 93 

by extending to higher order. Parametric uncertainty in complex chemical mechanisms has been 94 

quantified using PC methods in a number of applications
25–28

. PC-based methods quantify the 95 

relative importance of each parameter, as well as account for their interactions in the model 96 

system, a significant advantage over traditional model parameter sensitivity tests. They also 97 

provide computational efficiency while retaining the spatial and temporal fidelity of CTMs. 98 

We present here a first application of PC-based methods to a global atmospheric CTM of 99 

POPs. We use this analysis to quantify the contributions of emissions and physicochemical 100 

parameter uncertainty to NH- and Arctic-average concentrations of PHE, PYR, and BaP. We 101 

then combine the results of our PC analysis with measurements from long-term observation sites 102 

to constrain the values of these parameters. 103 

METHODS 104 

 To quantify uncertainty in the GEOS-Chem PAH simulations, we compare simulated 105 

concentrations and associated uncertainties to measurements at non-urban sites, and use these 106 
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measurements and their uncertainties in a Bayesian analysis to constrain the probability 107 

distributions of the physicochemical parameters. Throughout this work we will refer to model 108 

“parametric uncertainty”, which is the uncertainty in simulated concentrations resulting directly 109 

from the uncertainty in the model input parameters; i.e. physicochemical properties and 110 

emissions magnitudes.  111 

GEOS-Chem Model 112 

 The simulations we assess in this study are carried out using the GEOS-Chem PAH 113 

chemical transport model
12

. This model has been used in previous studies to simulate long-range 114 

atmospheric transport of PAHs and has allowed comparison to measurements where it has been 115 

able to resolve meteorologically-driven episodic high-concentration events
12

. Evaluation of the 116 

model against measurements in both mid-latitudes and the Arctic, and traditional sensitivity tests 117 

have been conducted previously; we refer the reader to the referenced papers for a detailed 118 

assessment of model perfomance
12,13

. Here, we briefly describe major features of the model, 119 

including meteorology, emissions, chemistry, and gas-particle partitioning. GEOS-Chem uses 120 

assimilated meteorology from the NASA Goddard Earth Observing System’s GEOS-5 dataset at 121 

a temporal resolution of 6 hours, a horizontal resolution of 0.5º x 0.667º re-gridded to 4º x 5º for 122 

computational efficiency, and 47 levels vertically.  The simulations for this study were run for 123 

the years 2006-2008.  PAH emissions in the model come from the inventory of Zhang and Tao
17

, 124 

which represents annual emissions from the year 2004, is resolved on the national scale, and 125 

includes details for individual sectors and PAHs but is not time-resolved, meaning the emissions 126 

are not seasonally or annually varying. Emissions are discussed in more detail in following 127 

sections.  Each model run begins with a “spin-up” period of one simulated year to negate the 128 

transient effects of initial conditions. 129 
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 Upon emission, the model partitions PAHs between the gas and aerosol phases using a 130 

black carbon-air partition coefficient (KBC) to represent partitioning to black carbon (BC) aerosol 131 

and an octanol-air partition coefficient (KOA) to represent partitioning to organic carbon (OC). 132 

The overall gas-particle partitioning is governed by a dual OC absorption and BC adsorption 133 

model
12

 based on the Dachs-Eisenreich
29

 equation. Both OC and BC concentrations are 134 

prescribed as monthly averages in the PAH simulations, pre-calculated from full chemistry 135 

GEOS-Chem simulations
10,30

 for computational efficiency. Gas-particle partitioning is re-136 

calculated at each chemistry time step of GEOS-Chem (60 min). The effect of using this coarse 137 

time resolution of prescribed particle concentrations was found to be small compared to the 138 

parametric uncertainties discussed below
13

. 139 

Each of these partition coefficients’ temperature dependence is determined by an internal 140 

energy of phase change according to the van’t Hoff relationship. These internal energies are 141 

governed by enthalpies of phase change. The enthalpy of vaporization ΔHvap is the uncertain 142 

parameter that determines the sensitivity of particle partitioning to changing temperature, while 143 

the enthalpy of solvation in liquid water ΔHsol in combination with ΔHvap determines that of wet 144 

deposition.  145 

We simulate the oxidation of gas phase PAHs by reaction with hydroxyl radicals (OH). 146 

Monthly average OH concentrations are prescribed by a GEOS-Chem full chemistry simulation
31

 147 

with a daily cycle overlaid on these monthly averages. PAH reaction with OH is represented by a 148 

second order reaction with reaction rate constant kOH. On-particle oxidation by ozone is 149 

simulated using the parametrization of Kahan et al.
32

 150 

Both gas- and particle-phase PAHs undergo wet deposition in the simulations. Gas-phase 151 
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PAH is scavenged by liquid water according to the air-water partitioning coefficient KAW, which 152 

is temperature dependent according to ΔHAW (a combination of ΔHsol and ΔHvap) following the 153 

van’t Hoff relationship. Dry deposition for gas-phase PAH is simulated according to Wang et 154 

al.
33

, with lipophilic uptake scaled by the KOA 
12

.  A complete evaluation of GEOS-Chem 155 

simulations of PAHs can be found in the original work by Friedman and Selin
12

. The seven 156 

uncertain physicochemical parameters mentioned above are included in our analysis for each 157 

PAH. 158 

Polynomial chaos 159 

The PC-based estimator uses orthogonal polynomials to approximate GEOS-Chem model 160 

output as a function of model inputs. The polynomial expansion of the model output to be 161 

estimated takes the form  162 

 

𝜂(𝜉) =  𝛼0 + ∑ ∑ 𝛼𝑗,𝑘

𝑀

𝑘=1

𝑑

𝑗=1

𝐻𝑗(𝜉𝑘) + ∑ ∑ 𝛽𝑘,𝑙

𝑀

𝑙=𝑘+1

𝑀−1

𝑘=1

𝐻1(𝜉𝑘)𝐻1(𝜉𝑙) + ⋯ + 𝑂𝑟𝑑𝑒𝑟(𝑑) 

(1) 

 

where the estimator 𝜂 of degree 𝑑 is a function of the polynomials 𝐻𝑗 of order 𝑗, the 𝑀 variables 163 

𝜉𝑘 representing model inputs, the expansion coefficients 𝛼𝑗,𝑘 and 𝛽𝑘,𝑙, and higher order 164 

coefficients. The terms not shown in the equation are cross terms of degree greater than two, 165 

which include the product of up to 𝑑 Hermite polynomials of different variables, analogous to 166 

the second order cross terms shown. In this study, we truncate the polynomial after third order. 167 

To obtain the expansion coefficients, one model run at a unique set of inputs is performed for 168 

each term in equation (1)
34

. The set of inputs for the model runs for each degree’s terms are the 169 

values corresponding to the roots of the next degree’s polynomials. The outputs of these model 170 

runs and the corresponding sets of input values are used to set up a system of equations to solve 171 
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for the expansion coefficients
27

. Further description, along with validation, of the PC expansion 172 

can be found in the Supporting Information (section S4). 173 

We use the polynomial estimator to directly infer properties of the uncertainty 174 

distribution of model output (in this case total (gas plus particulate phase) PAH mass 175 

concentration) without relying on Monte Carlo methods, which is accomplished using the 176 

analytical forms of the mean, variance and skewness from the polynomial coefficients
27

. We also 177 

calculate the portion of the total output variance contributed by each input parameter using the 178 

expansion coefficients
27,28

.  179 

Physicochemical parameter uncertainties 180 

 We conduct an extensive review of the literature for experimentally determined values of 181 

each of seven uncertain physicochemical parameters for the three PAHs investigated in this 182 

study, and construct probability distributions based on the available data (summarized in Tables 183 

S1-S3). The distributions (Table 1 and discussed below), are for the parameters that most directly 184 

affect the simulated atmospheric fate and transport of the PAHs based on previously-conducted 185 

traditional model sensitivity testing
12

. Model processes that are sources of uncertainty for all 186 

chemicals (including non-POPs) simulated by GEOS-Chem, such as advection and wet 187 

deposition schemes, are not the focus of this study.  188 

 189 

Partition coefficients (air-water: KAW, black carbon-air: KBC, octanol-air: KOA): 190 

Since the partition coefficients used in the model are experimentally determined and reported in 191 

log form, we estimate their uncertainty distributions as normal distributions of the log values, 192 
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with the means and standard deviations derived from literature values (see SI for details and 193 

references).  194 

KBC, which describes the fraction of PAH found in the BC phase given an amount of BC 195 

particulate matter, is the combination of KAW and the BC-water partition coefficient (KBC-Water)
35

, 196 

 log (𝐾𝐵𝐶) = −log (𝐾𝐴𝑊) + log (𝐾𝐵𝐶−𝑊𝑎𝑡𝑒𝑟) (2) 

where KBC-Water gives the ratio of concentrations of PAH in the BC particulate phase to dissolved 197 

PAH at equilibrium. Since KBC itself is not an independent parameter due to its relationship to 198 

KAW, we use the independent KBC-Water instead as the uncertain parameter for this study.  199 

 Enthalpies of phase change (ΔHvap and ΔHsol): We estimate the uncertainty 200 

distributions for the enthalpy of vaporization (ΔHvap) and the enthalpy of solvation (ΔHsol) for 201 

PHE, PYR and BaP as normal distributions with the means and standard deviations of a 202 

collection of literature values of ΔHvap or ΔHsol for each PAH (see SI for details and references).  203 

On-particle ozone oxidation rate constant (kO3): For all three PAHs, we use the 204 

reported “A” and “B” kinetic parameter values and their uncertainties from Kahan et al.
32

 as 205 

model inputs. Across all atmospheric ozone concentrations, the B-parameter dominates the 206 

contribution to uncertainty in kO3, so we neglect A-parameter uncertainty in our analysis.  207 

OH oxidation rate constant (kOH): For PHE, we estimate the uncertainty distribution 208 

from three literature values and their associated uncertainties
14,36,37

. The mean value of the 209 

normal uncertainty distribution is estimated by the uncertainty-weighted mean of these three 210 

values, and the standard deviation of the distribution is estimated by the standard deviation of the 211 

weighted mean.  212 

While there is no literature value for BaP’s or PYR’s kOH, values can be obtained from 213 
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the Atmospheric Oxidation Program software AOPWIN, which uses an ionization potential-214 

activity relationship
38

,  215 

 ln(𝑘𝑂𝐻) = −4.345 − 2.494(𝐼𝑃) (3) 

 

where 𝑘𝑂𝐻 has units of cm
3
 molec

-1
 s

-1
 and 𝐼𝑃 is the ionization potential in units of eV. 216 

We use the mean and standard deviation of the National Institute of Standards and 217 

Technology collection of reported ionization potentials for BaP
39

 to estimate a normal 218 

distribution that results in a log-normal distribution of IP-derived kOH values. Similarly, for PYR 219 

we use the mean and standard deviation of the collection of reported PYR IPs
40

 to estimate the 220 

uncertainty distribution for PYR’s kOH. 221 

Regional emissions uncertainties 222 

Emissions uncertainty results from uncertainties in both emission activities (quantity of a 223 

given type of emitting process) and emission factors (PAH emission quantity per activity). The 224 

total PAH emission E due to a process i can be divided into those two elements: 225 

 𝐸𝑖 = 𝐴𝑖𝐹𝑖 (4) 

 

where 𝐴𝑖 is the emissions activity of process i and 𝐹𝑖 is the emission factor for that process. 𝐹𝑖 226 

can be uncertain to a much larger degree than 𝐴𝑖 
17

 because the conditions under which each 227 

emitting process is carried out in reality are highly varying but summarized by a single value. 228 

Measurements of 𝐹𝑖 of the same process by different experimenters can yield orders of 229 

magnitude differences
17

. For example, 𝐹𝑖 associated with diesel fuel in the transport sector will 230 

depend on such factors as the type of fuel burned, type of engine burning the fuel, and 231 

temperature and condition of the engine. PAH emissions processes with the largest uncertainties 232 
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in 𝐹𝑖 include primary aluminum production, use of traffic gasoline, diesel, and kerosene, 233 

industrial coal burning, and non-transport petroleum combustion
17

. 234 

Given that there are distinct source contributions to PAH emissions and their 235 

uncertainties in different regions of the globe, we define discrete emissions regions, and calculate 236 

an a priori probability distribution for the total emissions of each region. We choose the regions 237 

of North America, Europe, South Asia, East Asia and Africa because of the large magnitude of 238 

emissions (South Asia, East Asia, Africa), and proximity to the Arctic (North America and 239 

Europe). We estimate the uncertainty distribution of total emissions of each region using Monte 240 

Carlo sampling over each country’s 𝐴𝑖 and the 𝐹𝑖 uncertainty distributions
17

 and assume that the 241 

spatial distribution of emissions within each region remains fixed. Regional emission 242 

distributions (Figures S1-S3) are then used as input parameters, along with physicochemical 243 

parameters, in the above-described PC analysis. 244 

In-situ observations 245 

We use observed annual average total (gas+particulate) BaP, PYR, and PHE 246 

concentrations from each of 10 sites monitored by the Co-operative Programme for Monitoring 247 

and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP), Integrated 248 

Atmospheric Deposition Network (IADN), and Environment Canada (EC) observation networks 249 

in the Northern Hemisphere (NH) for comparison to model values. All observations were 250 

collected at land-based non-urban sites using high-volume air samplers. Particle-bound PAHs 251 

were collected on glass fibre filters, and volatile PAHs were adsorbed to polyurethane foam 252 

(PUF) plugs. Spatial coverage includes the Great Lakes, Northern Europe, and two Arctic sites. 253 

Site locations, concentrations and references are summarized in Table S4, and are the same sites 254 
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used for model-measurement comparison by Friedman and Selin
12

. 255 

For site-by-site comparison to simulated concentrations, we calculate observational errors 256 

following Chen and Prinn
41

. The observational error for comparison to a model grid box 257 

accounts for statistical representativeness (accounting for some stations’ non-continuous 258 

sampling), analytical method precision error, site inter-calibration error, and spatial mismatch 259 

error (i.e. a single point’s representativeness of the whole grid-box). These errors (see Table S4) 260 

represent the variability in observed values that is impossible to capture with any model, and are 261 

thus separate from model uncertainty. These errors range from ±25% to a factor of 3, depending 262 

on the measurement site and the PAH in question. 263 

Constraint of physicochemical parameters by observations 264 

Using the annual average measurements outlined above, and PC-estimated concentrations 265 

based on annual average model output, we constrain the physicochemical parameter uncertainty 266 

distributions by Bayesian inference, combining information from observations and a priori 267 

parameter uncertainties. We compare 1) the PC polynomial-estimated concentration in the model 268 

grid box encompassing a measurement location for a given set of physicochemical and emissions 269 

parameter values to 2) the observed concentration at the same location. By mapping the 270 

predicted concentrations as a function of the uncertain parameters using the PC estimator, we 271 

define a weighted least-squares cost function of the form: 272 

 

𝐾(𝜉)2 = ∑ (
𝑌𝑖 − 𝜂𝑖(𝜉)

𝜎𝑖
)

2𝑁

𝑖=1

 

(5) 

 

where summation is over the 𝑁 measurement locations, 𝑌𝑖 is the observed value at a particular 273 

site, 𝜂𝑖(𝜉) is the polynomial estimate at parameter values 𝜉, and 𝜎𝑖 is the total “observation 274 
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errors” from above at measurement site 𝑖. 275 

With the least-squares comparison above, the likelihood function 𝑃(𝑌|𝜉) is related to the 276 

cost function via 277 

 𝑃(𝑌|𝜉) ∝  𝑒−𝐾(𝜉)2
. (6) 

 

This makes use of the PC estimators and the site measurements and their errors to estimate the 278 

likelihood of observing the concentrations 𝑌 as a function of the parameter values 𝜉. 279 

 To update the a priori uncertainty distributions, we use Bayes’ rule for the a posteriori 280 

distribution 𝑃(𝜉|𝑌): 281 

 𝑃(𝜉|𝑌) ∝ 𝑃(𝜉)𝑃(𝑌|𝜉) (7) 

 

where 𝑃(𝜉) is the prior uncertainty distribution. This results in a description of the relative 282 

probabilities of each physicochemical parameter value, given the available constraining 283 

measurements.  284 

 285 

 286 

 287 

RESULTS 288 

We calculate polynomial estimators as described above, and evaluate their predicted log-289 

concentrations against independent full GEOS-Chem model runs. Over the parameter space 290 

covered by the physicochemical property uncertainty distributions, the polynomial estimator 291 
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matches the validation data-set with r
2
 greater than 0.99 (see Figure S4) for all three PAHs. We 292 

use the polynomial estimators to calculate model uncertainty distributions for NH and Arctic 293 

(above 66°N) surface concentration geometric averages for annual and Northern Hemisphere 294 

winter (DJF) and summer (JJA) periods for all three PAHs, attribute fractions of this uncertainty 295 

to individual model parameters, and constrain parameter uncertainty distributions using 296 

observation site data. 297 

Comparison to measurements 298 

 Figure 1 shows a comparison of monthly average concentrations simulated using the PC-299 

based estimator and associated parametric uncertainties to measured average concentrations and 300 

measurement uncertainties for non-urban sites for each PAH. The simulations capture the 301 

measurements within the ±2σ parametric uncertainty interval for all three PAHs, with PYR and 302 

BaP capturing the measurement means within the ±σ interval.  303 

 Simulated PHE concentrations show agreement with measurements during the winter-304 

spring and summer-fall transitions, but measured means are higher than simulated during JJA 305 

and lower during DJF
12

. In the summer, the measured mean falls within the ±σ bounds of the 306 

model, but during the winter months (Nov, Dec, Jan, Feb), the measured concentrations fall 307 

between the –σ and -2σ model values. This discrepancy could be due to unresolved seasonality 308 

of emissions, or secondary sources which are not represented in the simulations, but have been 309 

tested and discussed previously
13

.  PYR simulated concentrations are lower than observed 310 

concentrations for all except the winter months. The observed values do, however, fall into the 311 

±σ range of the model uncertainty distribution for all months.  BaP simulated concentrations 312 

have the highest parametric uncertainty, and the observed concentrations fall into the ±σ range of 313 
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the model for all months of the year, with the simulated seasonal cycle following the observed 314 

cycle closely. 315 

Northern Hemisphere and Arctic model uncertainty in concentration  316 

Figure S5 shows model parametric uncertainty distributions for BaP, PYR and PHE, for 317 

both NH and Arctic average concentrations, and for annual, winter, and summer temporal 318 

averages. Across all three PAHs, JJA average simulated concentrations are lower with higher 319 

uncertainty than DJF averages. PHE concentrations have the least parametric uncertainty, with a 320 

range (95% confidence interval) spanning approximately one order of magnitude for annual, 321 

summer, and winter averages. PYR and BaP parametric uncertainty ranges during the summer 322 

span more than two orders of magnitude, and close to an order of magnitude during the winter. 323 

 In the Arctic, parametric uncertainty is at its lowest for all three PAHs during the winter, 324 

when there is little to no sunlight to drive photochemical oxidation. Average concentrations of 325 

PAHs are highest during the winter, and lowest during the summer in the Arctic because of the 326 

presence of OH for oxidation, and this relative abundance of OH also drives the sensitivity of the 327 

PAH concentrations to oxidation rate constant uncertainty. The seasonal difference in the Arctic 328 

average PAH concentration is more pronounced than the NH average, with summer-winter 329 

differences for all three PAHs of more than three orders of magnitude.  330 

Contributors to model parametric uncertainty 331 

 The important sources of model parametric uncertainty are substantially different 332 

between NH and Arctic average concentrations, and across the three PAHs. Table S5 shows the 333 

fractional contribution of leading parameters to the total resulting model parametric 334 

concentration uncertainty for PHE, PYR, and BaP. Figures S10-S20 show the spatial 335 
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distributions of these contributions across the globe. 336 

At the hemispheric scale, PHE concentration parametric uncertainty is driven year-round 337 

by uncertainty in the oxidation rate constant. Since PHE is mostly in the gas phase (90%-100% 338 

12
), uncertainty in its gas-phase lifetime is the most important contributor to parametric 339 

uncertainty in the NH average simulated concentrations. In the Arctic average, however, 340 

uncertainty in European emissions gains importance, contributing close to a third of the 341 

parametric uncertainty annually and 64% in the winter. The relative importance of emissions and 342 

reduced importance of oxidation rate constant uncertainty during Arctic winter is due to the lack 343 

of atmospheric OH radicals. During the summer, European emissions uncertainty remains a 344 

significant secondary contributor, but kOH uncertainty makes up the largest fraction of the total 345 

for the model. 346 

 The contributors of PYR parametric concentration uncertainty follow a similar pattern to 347 

those of PHE. Because of the large uncertainty in the oxidation rate constant for PYR (see Table 348 

1) and the fact that >50% of atmospheric PYR is in the gas phase
12

, the parametric concentration 349 

uncertainty in the NH annual average is dominated by uncertainty in kOH. Like for PHE, the 350 

second-most important contributor to parametric uncertainty is European emissions. 351 

BaP has the most varied contributions of the three PAHs studied. For the NH annual 352 

average, uncertainty in KBC-Water contributes 63% of the total uncertainty, with kOH uncertainty 353 

contributing 30%, and the uncertainty in ΔHvap, European, and North American emissions 354 

making up the other 7%. This behavior changes little between the winter and summer season. 355 

 In the Arctic, KBC-Water is the leading source of parametric uncertainty for BaP. It 356 

contributes 55% annually, while kOH contributes 35% and 6% is due to ΔHvap. During the 357 
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relatively photochemistry-free winter months, the contribution from kOH drops to 3%, and the 358 

difference is made up by increases in the contributions of ΔHvap (to 11%), and European 359 

emissions (to 29%). In the summer, the opposite occurs and kOH uncertainty contributes 52% of 360 

the total. 361 

 Across all three PAHs, the contribution of physicochemical parameter uncertainty makes 362 

up more than 94% of the NH average parametric uncertainty. This is because a large fraction of 363 

the globe is far from emission sources, so wide spatial average concentrations are more sensitive 364 

to the uncertainty in the atmospheric lifetime than they are to emissions magnitude. In the case of 365 

PYR, parametric uncertainty in the atmospheric lifetime is almost entirely due to uncertainty in 366 

the oxidation rate because of the extremely high uncertainty in oxidation rate constant. For PHE, 367 

kOH also contributes most to uncertainty because PHE is mostly found in the gas phase. In the 368 

case of BaP, the uncertainty in the atmospheric lifetime is due to both the highly uncertain gas 369 

phase oxidation rate, but also the amount of BaP found in the particulate phase, which is 370 

primarily controlled by BC partitioning. Because of its nature as a mostly particulate matter-371 

bound PAH, BaP uncertainty has a larger contribution from the uncertainty in KBC-Water and 372 

ΔHvap, which together control partitioning to BC.  373 

 Closest to each emissions source region, uncertainty in that region’s emissions becomes 374 

most import, as removal during transport has not had time to take effect. Europe is the region 375 

with sources closest to the Arctic, and therefore European emissions uncertainty contributes 376 

more to simulated Arctic concentration uncertainty than other regional emissions. The emissions 377 

uncertainty contribution reaches a maximum during the winter, when concentrations of all three 378 

PAHs are highest due to lower loss rates, making it an important factor in the quantification of 379 

PAH transport to the Arctic. 380 
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Observation-constrained parameter distributions 381 

 We constrain the probability distributions of parameter values using the spatially 382 

distributed modeled and observed concentrations as described in the Methods section. Figure 2 383 

shows the observation-derived likelihood distributions, and prior and posterior probability 384 

distributions of the two most important parameters for model uncertainty at the measurement 385 

sites. PHE’s and PYR’s leading parameters are constrained by the analysis, while BaP’s are 386 

effectively unconstrained. 387 

 As shown in Figure 2(a), for PHE, the highest observation-constrained likelihood comes 388 

when kOH is highest and the European regional emission rate is low. The result is that the 389 

posterior distributions for kOH and EEurope have maximums at higher and lower values, 390 

respectively. Figure 2(b) shows a similar constraining effect of the observations for PYR’s kOH, 391 

which is shifted higher, while the EEurope posterior distribution is narrowed around the same value 392 

as the prior distribution. Figure 2(c) shows that the measurement comparison added no 393 

constraints to the prior parameter distributions for BaP (neither confirming nor denying the 394 

assumed prior), due to the larger uncertainties in both its simulated and observed concentrations. 395 

 After constraint by the measurement data, we estimate new most likely values for PYR’s 396 

and PHE’s kOH and rate of emission in Europe. The a priori best estimate of kOH for PYR was 397 

7x10
-11

 cm
-3

s
-1

, while the updated best estimate is 1x10
-10

 cm
-3

s
-1

. The prior estimate of kOH for 398 

PHE of 1.9x10
-11

 cm
-3

s
-1 

is updated to 2.3x10
-11

 cm
-3

s
-1

. We lower our best estimates of European 399 

emissions for PHE from 5.8 kt/yr to 4.1 kt/yr. 400 

 401 

 402 
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DISCUSSION  403 

 Through the uncertainty attribution described above, we identify the key parameters for 404 

which reducing uncertainty would improve our ability to model long-range transport of PAHs. 405 

For PHE and PYR, kOH uncertainty has the largest impact on model results, while for BaP kOH, 406 

KBC-Water, and ΔHvap all contribute to uncertainty in simulated concentrations. These results are 407 

similar to findings for multimedia models of other environmental toxics, which indicate that 408 

degradation rates and partition coefficients are the largest contributors to parametric 409 

uncertainty
19,21

.  Across all three PAHs, more precise experimental quantification of kOH could 410 

greatly reduce parametric model uncertainty.  In particular for PYR and BaP, the lack of 411 

experimental values of kOH
 
leads to an additional step in the propagation of uncertainty, as the 412 

value of kOH used in the model is itself a parametrization.  With reduced kOH uncertainty, we 413 

would be better able to constrain PAH emissions using observations of concentrations, and we 414 

would improve our ability to use modeling to inform policy
42

.   415 

We are able to quantitatively attribute simulated concentration uncertainty to individual 416 

model parameters while accounting for non-linear model responses in a computationally efficient 417 

manner. Because of the method’s relatively low number of required model runs, it could be 418 

applied to other spatially resolved environmental models for low-cost but detailed identification 419 

of leading contributors to parametric uncertainty. The detailed parametric uncertainty analysis 420 

that this method provides is an important aspect of environmental transport model simulations 421 

that is commonly unreported in the literature.  This type of analysis should be carried out for 422 

other substances and models, as the conclusions from our simulations of PAHs specifically may 423 

not apply to other substances or models.  This is evident in comparison to the first-order 424 

uncertainty analysis for BETR Research PCB153 simulations
24

, which suggests that emissions 425 
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uncertainties account for more than 90% of the simulated atmospheric concentration parametric 426 

uncertainty under current climate and emissions.  427 

We constrain physicochemical and emissions parameters using measurements, with 428 

updated uncertainty distributions for kOH and EEurope for PHE and PYR. While this method 429 

represents a quantitative improvement over traditional model sensitivity tests, in which 430 

parameters are altered based on forward matches to observations, our approach also has 431 

important limitations. The constraint relies on the comparison of concentrations measured at a 432 

point to the average concentration within a GEOS-Chem grid-box. While we account for this 433 

through an estimate of representativeness error, spatial heterogeneities within the grid-box are 434 

not represented and could introduce an unquantified bias in the comparisons due to this 435 

mismatch of spatial resolutions.  We do not optimize for the spatial distribution of emissions in 436 

this study, which precludes the ability to account for a local emission source that could be 437 

driving observed concentrations at a site.  Our analysis also relies on the quantification of the 438 

emissions parameters and their uncertainty at the inventory’s national level, and any potential 439 

biases in these estimates would propagate to our results. For example, an underestimation of the 440 

uncertainty in biomass burning emissions factors in the inventory would propagate through the 441 

model to result in an underestimate of concentration uncertainty.   442 

 While we quantify the impact of uncertainties in regional emission magnitudes and 443 

physicochemical properties on simulated concentrations in detail, there are other sources of 444 

uncertainty in simulated concentrations. Emissions can vary substantially temporally, and on 445 

spatial scales finer than those considered here. These temporal and spatial resolution mismatches 446 

between the simulations and reality will have a more limited effect on large spatial and time 447 

averages than on shorter-term localised concentrations. Along with direct emissions, secondary 448 
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emissions (revolatilization) from surface media can affect atmospheric PAH concentrations, and 449 

these secondary sources are not resolved in this work. The accuracy and time-resolution of 450 

prescribed concentrations of particulate matter and OH used in the model can also introduce 451 

uncertainty, but this uncertainty is significantly smaller than that due to their associated chemical 452 

parameters
13

. There is also non-parametric uncertainty associated with the particle partitioning 453 

scheme used, as deviations from measurements can be large, especially for smaller PAHs
15

 454 

whose concentrations have lower sensitivity to particle partitioning. Theoretical issues have been 455 

identified with the parametrization of partition coefficients
43

, which we have not accounted for 456 

here.  Limitations of particle partitioning schemes for PAHs in GEOS-Chem have been 457 

investigated in detail previously
23

. Considering these uncertainties, our results suggest that for 458 

BaP, further constraints on partitioning properties would improve our ability to capture long-459 

range transport. 460 

 Chemical transport modeling is susceptible to a variety of sources of uncertainty that are 461 

not unique to the simulation of PAHs. Advection in the atmosphere is carried out on a large scale 462 

that is only representative of the actual advection in the atmosphere on a coarse scale. This 463 

advection is based on meteorological reanalysis fields that have their own uncertainty. Prescribed 464 

precipitation also contributes to uncertainty in wet deposition. However, many of these processes 465 

in GEOS-Chem are evaluated and constrained using simulations of other atmospheric 466 

constituents (e.g. carbon monoxide, ozone) for which measurement data are less uncertain and 467 

more widely available
44–46

. The source of uncertainty most difficult to quantify is that which is 468 

associated with PAH-specific processes not represented by the model (e.g. on-particle oxidation 469 

reactions other than ozonation). A process that is not described by the model would not be 470 

represented in a parametric uncertainty analysis, and depending on the importance of the process 471 
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could be a major source of unquantified uncertainty.  472 

 Based on model sensitivity (Figures S6-S9), the most effective locations for hypothetical 473 

future measurement sites that could be used to improve the constraint of the most important PAH 474 

physicochemical properties are far from sources and are generally in regions where wet 475 

deposition is relatively less important, particularly in the Southern Hemisphere. These locations, 476 

however, have very low PAH concentrations, below common quantification limits. The resulting 477 

measurement constraint paradox is that the locations that would best constrain physicochemical 478 

properties have concentrations that are the most difficult to measure.  This means that greatly 479 

reducing model parametric uncertainty by observational constraint will require very low 480 

detection limits at long-term remote sites. Measuring these low concentrations is potentially 481 

achievable for the gas phase using passive air samplers, which accumulate greater contaminant 482 

mass over longer periods of time than traditional active samplers
42

.  483 

The results we present give important insight into the parametric uncertainty distributions 484 

of simulated PAH concentrations and their relationship to specific inputs. Our analysis 485 

demonstrates that there is a need to reduce the large parametric uncertainties stemming from 486 

physicochemical property data for PAHs, and identifies the properties which contribute most to 487 

model parametric uncertainty. While our analysis shows that long-term measurement sites can be 488 

used to constrain physicochemical property values for PHE and PYR, highlighting the 489 

importance of such measurements of atmospheric PAHs, better experimental quantification of 490 

PAH properties would provide the greatest reductions in simulated concentration uncertainty.  491 

We identify quantitatively which physicochemical properties of PHE, PYR and BaP could be 492 

targeted experimentally to greatly reduce simulated concentration uncertainty.  493 
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 The supporting information includes physicochemical property data and associated 497 
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Table 1. Uncertainty of physicochemical properties in GEOS-Chem PAH simulations 647 

(means and standard deviations of normal distributions). 648 

Parameter Role BaP Value 

(std.) 

PYR Value 

(std.) 

PHE Value 

(std.) 

log10 KBC-Water 

(unitless) 

BC partition 

coefficient 

8.8 (0.4) 

 

7.5 (0.2) 
 

6.85 (0.3) 
 

log10 KOA 

(unitless) 

OC partition 

coefficient 

11.27 (0.21)   8.78 (0.08) 
 

7.58 (0.06) 
 

ΔHvap 

(kJ/mol) 

Enthalpy of 

vaporization 

99.9 (7.4)  

 

82.3 (3.9)  68.3 (8.9)  

log10 KAW 

(unitless) 

Air-water partition 

coefficient 

-4.42 (0.08) 
 

-3.34 (0.07) 
 

-2.81 (0.06) 
 

ΔHsol 

(kJ/mol) 

Enthalpy of 

solvation 

37.9 (17.7)  

 

37.9 (8.9)  34.5 (2.0)  

kOH (cm
3
 molec

-1
 s

-1) 

(log10 kOH for BaP 

and PYR) 

Gas-phase 

oxidation rate 

constant 

-9.88 (0.26) 

(log10 kOH) 

 

-10.1 (0.35)  

(log10 kOH) 

 

1.9x10
-11

  

(0.4x10
-11

) 

 

kO3 (10
-7

 s
-1

, at 

50ppb O3) 

On-particle 

oxidation rate 

constant 

24.5 (3.5) 2.92 (1.21) 2.91 (0.92) 

 649 
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 651 

 652 

Figure 1. Measured and simulated total (gas and particulate) concentrations at non-urban sites for PHE (top), PYR 653 
(middle), and BaP (bottom). The black lines are means across the measurements at all non-urban sites, and their error 654 
bars show the standard deviation of the mean for each month. The blue lines are the simulated means across the same 655 

sites, with the shaded regions marking the σ and 2σ intervals of the parametric uncertainty distributions for each month. 656 
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(a) PHE 658 

 659 

(b) PYR 660 

 661 

(c) BaP 662 

 663 

Figure 2. Constraint of parameter uncertainty distributions by measurement data. (a) PHE, (b) PYR, (c) BaP 664 
distributions for the two most important parameters each. Prior distributions (dashed lines), observation-based 665 

likelihoods (dot-dashed lines), and posterior distributions (solid lines) shown. 666 


