

Freezeback Landfill Challenges with Increasing Temperature Models

Presenter
Travis Holmes, P.E.

Permafrost & Infrastructure Symposium Utqiagvik Conference July 29, 2023

Freezeback Landfills Summary

- Introduction
- Landfill Characteristics
- Regulatory Climate
- Status

INTRODUCTION

Freezeback Landfills Introduction

- Travis Holmes, P.E
 - Licensed Civil and Environmental Engineer
 - Focus on Water & Sewer and Sanitation Utilities
- Work of Note
 - Underground Utility work 3 Winters in Point Lay,
 Winters in Wainwright, 2 Winters in Utqiagvik
 - Ongoing support for NSB Utilities
 - Designs and Operational support for Class 1 and Class 2 Freezeback Landfills

LANDFILL CHARACTERISTICS

Landfills

- Community related landfills regulated under EPA Title 40
 Code of Federal Regulations:
 - Part 258 Criteria for Municipal Solid Waste Landfills
- Engineered and managed facilities for disposal of solid waste.
- Designed for specific waste streams
- Must protect the environment from contaminates

Landfills Classification

- Type of Waste
 - Municipal Solid Wastes
 - Industrial
 - Hazardous Wastes
- Mass of Waste received daily
 - Class 1 > than 20 tons per day
 - Class 2 5 tons to 20 tons per day
 - Class 3 up to 5 tons per day

- Freezeback Landfills
 - On Permafrost soils
 - Defined by 18 Alaska Administrative Code 60.228 as
 - Landfills that are designed, developed and operated to prevent permafrost degradation and to ensure all the waste will freeze with the permafrost
 - After landfill closure, the waste will remain frozen.
 - Closed landfill must protect the underlying permafrost
 - Waste is intended to be encapsulated, and not decompose
 - Six Class 1, 2 & 3 Landfills were approved under these regulations

- Freezeback Landfills Exemptions
 - Containment liner
 - Leachate collection system
 - Ground Water Monitoring
 - Methane Collection System

- Freezeback Landfill Characteristics
 - Thick gravel pad
 - Insulate permafrost to offset decreased albedo
 - Sloped to drain precipitation
 - No containment liners or leachate collection systems

Design LLC

- Freezeback Landfill Characteristics (cont'd)
 - Thick Closure Cap
 - Encapsulate and Insulate Waste and increase albedo
 - Shed precipitation and manage erosion
 - Low-permeability to prevent moisture intrusion and heat transfer
 - Soil types define cap thickness based on thermal properties
 - No membrane liner

- Freezeback Landfill Characteristics (cont'd)
 - Thermal Monitoring
 - Verification that waste remains frozen
 - Confirmation of cap thickness/insulative properties

REGULATORY CLIMATE

Freezeback Landfills Regulatory Climate

Freezeback Landfill Authorizations Required

- Planning
 - Service Area
 - Determine waste stream characteristics and waste generation
 - Define airspace volume and landfill life
 - How the landfill would be closed, used and monitored

Design

- Pad Thicknesses
- Containment structures
- Slope Stability/Erosion Control
- Site specific hazards: seismic, ground water, airports
- Thermal stability

Freezeback Landfills Regulatory Climate

- Past Freezeback Landfill Authorizations
 - Required thermal modeling to prove permanently frozen waste was achievable.
 - Regulators did not set criteria on waste thermal models other than engineer to show wastes remaining frozen.
 - No climate models or period was prescribed by regulators.
 - Models were accepted that indicated permanently frozen with anticipated materials for closure.

Regulatory Change

- 2017 ADEC announced by Public Notice intent to remove Freezeback Landfills from the regulations.
- The Public Notice was rescinded, but the regulators increased scrutiny on landfill proposals.
- Design Implications
 - The bar is HIGH
 - No climate forecast horizon is set
 - No prescription for temperature or precipitation models
 - Likely wise no upper limit for temperatures set
 - Confidence is low for 20 year models let alone 50 year or greater

Freezeback Landfills **Regulatory Climate**

14' Gravel Cap Thermal Modeling [S1014] Sample sections 0.5' Silty Sandy Gravel 6'Cap [\$3006] 0.5'Silty Sandy 13.5' Sandy Gravel Gravel 72' -1.5' Sandy Gravel 4' Sandy Silt, Silt 66' Typ. Waste Typ. Waste 65.25' Typ. Waste Typ. Waste UMIAQ Design IIC

Typ. Waste

Typ. Waste

Freezeback Landfills **Regulatory Climate**

 Thermal Modeling Sample Analysis

Height Above Gravel Workpad

65'

60'

55

STATUS

- New Freezeback Landfills are virtually eliminated
 - New construction and expansion of landfills follow conventional landfill designs possibly overlapping two differing designs.
 - Operator are updating operating and closure plans in advance of the next permit renewal.

Operations Impacts

- New engineering to replace previously approved plans
- Currently approved freezebacks may require engineering updates every 5 years to address new forecasted temperature data.
- Uncertainty with shifting design requirements. Expectation is that the closure caps will continue to thicken
- Facilities will operate and maintain both freezeback and conventional landfills. Both type of landfills are expected to be on the same sites, and possible overlap to maximize airspace usage.

- Design Changes (New Captial Costs)
 - Containment Liner Systems
 - Leachate Collection Systems (GCL&Membrane)
 - Ground water monitoring in permafrost
 - Methane monitoring required at closure

- Design Changes (New Captial Costs)
 - Operating pads thickness is expected to increase by ~50% to accommodate containment and leachate systems

- Operations (new operating costs)
 - Each new design element adds new inspection, monitoring and maintenance routines.
 - New training is required for O&M of new features
 - New laboratory testing is required for leachate

Unmet Needs

- The new leachate system creates a new waste stream to manage.
- Infrastructure is not in place to treat or dispose of leachate in the region. Options include
 - WWTP if leachate is not hazardous
 - Reduction and reinjection into the landfill
 - Injection wells
 - Truck haul to an approved disposal site (viable on road system sites)
 - Barge shipping to lower 48.

- New Development and Operation Costs for Landfill
 - Are expected to increase landfill disposal rates
 - New rate case studies are necessary to capture costs of construction and maintenance involved

Quyanaq!