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Abstract Seasonal predictions of Arctic sea ice have

typically been based on statistical regression models or on

results from ensemble ice model forecasts driven by his-

torical atmospheric forcing. However, in the rapidly

changing Arctic environment, the predictability character-

istics of summer ice cover could undergo important

transformations. Here global coupled climate model sim-

ulations are used to assess the inherent predictability of

Arctic sea ice conditions on seasonal to interannual time-

scales within the Community Climate System Model,

version 3. The role of preconditioning of the ice cover

versus intrinsic variations in determining sea ice conditions

is examined using ensemble experiments initialized in

January with identical ice–ocean–terrestrial conditions.

Assessing the divergence among the ensemble members

reveals that sea ice area exhibits potential predictability

during the first summer and for winter conditions after a

year. The ice area exhibits little potential predictability

during the spring transition season. Comparing experi-

ments initialized with different mean ice conditions indi-

cates that ice area in a thicker sea ice regime generally

exhibits higher potential predictability for a longer period

of time. In a thinner sea ice regime, winter ice conditions

provide little ice area predictive capability after approxi-

mately 1 year. In all regimes, ice thickness has high

potential predictability for at least 2 years.

1 Introduction

The Arctic environment is undergoing rapid change across

the marine, terrestrial, and atmospheric systems (e.g.

Serreze et al. 2007; Overland et al. 2004; Stroeve et al.

2007; Francis and Hunter 2007). Perhaps the most dramatic

aspect of this change is manifested in the reduction and

thinning of the Arctic floating ice cap (Serreze et al. 2007).

Near-term forecasts of sea ice conditions provide important

information on the marine accessibility of Arctic seas.

These serve a number of uses and a number of institutions

provide operational forecasts in order to meet these needs.

Many of these forecasting systems use multiple regres-

sion models that rely on statistical relationships present

in the historical record (e.g. Walsh 1980; Drobot and

Maslanik 2002; Drobot et al. 2006; Lindsay et al. 2008). The

predictors used in these systems include a mix of infor-

mation on previous ice (e.g. concentration, albedo, age),

ocean (e.g. temperature) and atmospheric (e.g. incoming

longwave radiation) conditions. Forecasting techniques

that use ensemble simulations from ice–ocean coupled

models with prescribed atmospheric forcing from the his-

torical record have also been explored (Zhang et al. 2008a).

Additional work has examined the influence of different

factors for an extreme September sea ice anomaly using an

adjoint of an ice–ocean coupled model (Kauker et al.

2009), and found that the winter/spring ice thickness and

summer wind and air temperature variations played a

particularly important role.

Recently, the Study of Environmental Arctic Change

(SEARCH) program has requested end-of-summer sea ice

‘‘outlooks’’ from the scientific community in an effort to

better assess the methods used to provide short-term fore-

casts of sea ice conditions. These are focused on the

expected September sea ice extent minimum at lead times
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of from 1 to 4 months (although investigators often base

their outlooks on the previous spring, winter or summer

conditions). Information from the official website (http://

www.arcus.org/search/seaiceoutlook/index.php) indicates that

there are many methods being explored in these outlooks

and that these provide considerably different quantitative

forecasts.

The various methods documented in these studies do

show some skill in forecasting the summer ice cover at a

variety of lead-times. However, in the presence of the

rapidly changing Arctic environment, statistical relation-

ships used in these forecasting methods (or diagnosed from

an ocean–ice coupled model adjoint; Kauker et al. 2009)

may not remain valid. Additionally, using prescribed

historical atmospheric forcing in ensemble ice–ocean

numerical model forecasts neglects feedbacks to the

atmosphere. This has important implications for the fore-

casts, which may be dependent on the mean climate state.

To date, limited work has been done to explore the inherent

predictability of Arctic sea ice cover. Regional climate

modeling experiments focused on the 1980s and 1990s

have elucidated aspects of Arctic ice and near-surface

climate predictability and the role of regional versus large-

scale atmospheric circulation for interannual Arctic climate

variability (Döscher et al. 2009). Additionally, Koenigk

and Mikolajewicz (2008) have assessed high latitude

climate predictability using ensemble experiments with a

global coupled climate model and found that central Arctic

ice thickness is highly predictable for up to 2 years due to

persistence. In contrast, the inherent predictability of sea

ice concentration was very low. These simulations used

control conditions without rising greenhouse gases and

hence did not assess changing aspects of predictability in a

changing Arctic environment.

Climate model integrations of the twentieth and twenty-

first centuries have been performed with a number of dif-

ferent modeling systems (IPCC 2007). While these models

vary in the quality of their Arctic simulations (Zhang and

Walsh 2006; Arzel et al. 2006; Gerdes and Koberle 2007;

Holland et al. 2008a), they do provide a useful tool to

assess changing aspects of Arctic sea ice predictability.

Through the use of ‘‘perfect initialization’’ experiments in

which multiple ensemble integrations are initialized with

identical ice, ocean and terrestrial conditions, we can assess

the inherent predictability in the sea ice system within the

climate model context. Obtaining initial conditions from

different time periods of standard twentieth to twenty-first

century integrations allows us to test how predictability

characteristics change with the changing climate state.

Here we assess a set of ‘‘perfect initialization’’ ensemble

integrations from the Community Climate System Model,

version 3 (CCSM3; Collins et al. 2006a) to address a

number of interrelated questions regarding sea ice

predictability on seasonal to interannual timescales. In

particular, within the climate model system, we assess: (1)

What is the inherent predictability of Arctic sea ice? (2)

How important is ‘‘preconditioning’’ versus intrinsic vari-

ability for subsequent ice conditions? and (3) Do predict-

ability characteristics change with a changing ice state? We

assess the predictive capability for both Arctic sea ice

thickness and area, with a particular focus on end-of-

summer (September) sea ice cover since this has been the

subject of a number of recent studies (Drobot et al. 2006;

SEARCH outlook activity).

2 Climate model integrations

Climate model integrations from the fully coupled

Community Climate System Model, version 3 (CCSM3)

are examined. This model includes atmosphere, ocean, land

and sea ice components (Collins et al. 2006a). For the

integrations considered here, the atmosphere model

(CAM3) (Collins et al. 2006b) is run at T85 resolution

(approximately 1.4 degrees) with 26 vertical levels. The

ocean model (Smith and Gent 2004) includes an isopycnal

transport parameterization (Gent and McWilliams 1990)

and a surface boundary layer formulation following Large

et al. (1994). The dynamic-thermodynamic sea ice model

(Briegleb et al. 2004; Holland et al. 2006b) uses the elastic-

viscous-plastic rheology (Hunke and Dukowicz 1997), a

sub-gridscale ice thickness distribution (Thorndike et al.

1975; Lipscomb 2001) and the thermodynamics of Bitz and

Lipscomb (1999). Both the ice and ocean models use a

nominally 1-degree resolution grid in which the north pole

is displaced into Greenland. The grid spacing over the

Arctic Ocean varies from about 20 km � 60 km near

Greenland to 50 km � 70 km in the East Siberian Seas. As

such, the Arctic Ocean is reasonably well resolved and

there is an open channel within the Canadian Arctic

Archipelago. The land component (Bonan et al. 2002)

includes a subgrid mosaic of plant functional types and

land cover types based on satellite observations. It uses the

same spatial grid as the atmospheric model.

Previous studies have identified that CCSM3 simulates a

reasonable Arctic sea ice climatology in the late twentieth

century compared to observations (e.g. Holland et al.

2006a; Gerdes and Koberle 2007). This includes a realistic

mean and spatial distribution of Arctic ice thickness and

reasonable ice mass budget terms (Holland et al. 2008a),

although the Fram Strait ice volume transport is about 50%

higher than observed (Holland et al., 2006b). The summer

ice extent is very well simulated compared to satellite

observations (Fig. 1a). Additionally, CCSM3 is one of only

two CMIP3 models with September ice extent trends over

the latter part of the twentieth century that are consistent
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with the observed satellite era ice loss (Stroeve et al. 2007).

This suggests that an analysis of predictability character-

istics of CCSM3 September ice cover in the twentieth and

twenty-first centuries will provide useful information on

changing predictability in an Arctic environment under

transformation. The simulated winter ice edge (Fig. 1b)

also agrees well with observations except in the Labrador

Sea where excessive ice cover is associated with low ocean

heat transport into that region (Jochum et al. 2008). This

may influence winter predictability characteristics diag-

nosed there.

In order to assess the inherent predictability in Arctic

sea ice conditions on seasonal to interannual timescales, we

have run three sets of integrations initialized on January 1

and integrated for 2 years (Table 1). The set of ‘‘perfect-

initialization’’ ensemble simulations apply identical ocean,

sea ice, and terrestrial initial conditions that are obtained

from standard twentieth or twenty-first century CCSM3

simulations. We were limited in the timing of the initial

conditions because restart datasets that are needed to ini-

tialize the model were only saved from the existing twen-

tieth to twenty-first century standard model integrations

once a year on January 1. The initial atmospheric state

varies across the different ensemble members and is

obtained from January 1 conditions from different years of

the same standard twentieth or twenty-first century CCSM3

integration that was used for the initial ocean–sea ice–

terrestrial state. The years used to obtain the atmospheric

initial conditions are from the same decade in which the

initial ice–ocean–land conditions are chosen (and hence

have a similar ‘‘climate’’), allowing for eleven different

possible initial atmospheric states. The ensemble size is

increased further by running the simulations on two dif-

ferent computer platforms, which introduces round-off

level numeric changes to the runs. This allows for a

maximum of 22 ensemble members. Because of compu-

tational limitations, from this maximum of 22 members, a

subset of 20 integrations were run for the first and third

ensemble set. For the second ensemble set, 23 members

were run, with the additional member obtained by applying

round-off level changes to one of the initial atmospheric

states. Given the rapid adjustment time-scales of the

atmosphere, which equilibrates to the surface ice–ocean–

land conditions within several months (Deser et al. 2007),

we expect any inherent predictability in the system on

seasonal to interannual timescales to reside in the ocean

and/or sea ice initial state. Indeed, the spread across the

ensemble members initialized with the same atmospheric

state but with round-off level changes introduced is not

generally smaller than the spread across ensemble mem-

bers initialized with different initial atmospheric states.

This supports our argument that the initial atmospheric

state does not unduly determine the sea ice simulation on

monthly-interannual timescales.

The first ensemble set, with 20 members, is initialized

with conditions from year 1970 of a standard twentieth

century integration (Meehl et al. 2006). This is a relatively

thick Arctic sea ice regime (Fig. 2a) similar to observed

conditions in the 1960s–1970s (e.g. Bourke and Garrett

1987). In the second and third ensemble sets, with 23 and

20 members, respectively, the initial ice and ocean state

were chosen to reflect conditions similar to those of the

March(a)

September(b)

20%

30%

40%

50%

60%

70%

80%

90%

Fig. 1 The mean CCSM3 sea ice concentration from 1980 to 1999

for (a) March and (b) September. The observed ice extent (15% ice

concentration contour) is shown by the solid black line

Table 1 A description of the three sets of perfect initialization

ensemble integrations

Initial conditions Initialization

run

Number of

members
Year Ice thickness

Set 1 1970 3.2 B30.030a 20

Set 2 2016 1.8 B30.040b 23

Set 3 2017 1.5 B30.040b 20
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recent historical record with a thinner mean ice pack

(Fig. 2b, c). These are obtained from the January 1 con-

ditions from years 2016 and 2017 of a standard twenty-first

century integration with a middle range emissions scenario

(SRES A1B; IPCC 2007). The specific years used for the

initialization of Sets 2 and 3 were chosen based on the

control simulation behavior. They differ in that set 2 is

initialized with the January 1 conditions just preceding a

large reduction in September ice area (of 1.45 million

km2), and set 3 is initialized with the January 1 conditions

just following this large ice area loss (Fig. 3). Although

much more extreme low-ice states occur later in the sim-

ulated twenty-first century, these initial conditions were

chosen because they can provide insight into the predict-

ability of large ice loss events similar to that of September

2007 and the conditions following such an event.

The control integrations from which the initial condi-

tions are obtained can be considered another member of the

predictability ensembles as they have identical initial ice–

ocean–terrestrial conditions for the years in question and

they are treated as such for our results in Sect. 3. Different

standard CCSM3 ensemble runs were used for the selected

twentieth century (1970) initial conditions and twenty-first

century (2016 and 2017) initial conditions. This was due to

the initial condition availability from these runs. However,

Ensemble 1;  Initial Thickness=3.21m(a)

Ensemble 2;  Initial Thickness=1.82m(b)

Ensemble 3;  Initial Thickness=1.49m(c)
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Fig. 2 The January 1 initial ice thickness conditions prescribed for

the three different ensemble sets
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Fig. 3 The (a) northern hemisphere September ice area and (b)

Arctic averaged January ice thickness from the twentieth to twenty-

first century control run that is used to obtain initial conditions for the

ensemble experiments. The red diamonds show the years from which

the initial conditions are obtained (in panel a, these are shown for the

time 3 months prior to the January initialization). The red line in

panel (a) shows the observed timeseries of September ice area

(Fetterer et al. 2002, updated)
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the standard CCSM3 twentieth to twenty-first century

ensemble members are subject to the same timeseries of

external forcing (e.g. changing atmospheric greenhouse gas

concentrations, volcanic forcing, and solar variability at the

top-of-atmosphere) and only differ slightly in their initial

preindustrial (year = 1870) state. All of these integrations

exhibit long-term declines in Arctic sea ice thickness and

area (Holland et al. 2006). Differences across the various

ensemble members reflect the contribution of simulated

natural variability in the system and as such the initial

states chosen for the predictability ensemble experiments

represent valid CCSM3 conditions for the respective time

periods.

3 Results

Since the ensemble simulations apply an identical initial

ice–ocean–terrestrial state (perfect initial conditions) and

an identical model (perfect forecast model), the results give

a measure of the maximum possible predictability in

the system on seasonal-interannual timescales. The three

different sets of ensemble members (Table 1), with dif-

ferent initial conditions (Fig. 2), allow us to explore the

importance of the changing mean sea ice state for the

seasonal-interannual predictability characteristics. Set 1

has relatively thick sea ice, whereas Sets 2 and 3 have

thinner conditions more similar to the recently observed

state (e.g. Stroeve et al. 2008).

The timeseries of northern hemisphere September ice

area and January Arctic basin averaged ice thickness for

1950–2060 from the control integrations that are used to

obtain initial conditions in the ensemble sets are shown in

Fig. 3. These standard twentieth to twenty-first century

simulations, including the Arctic sea ice conditions, have

been assessed previously (e.g. Holland et al. 2006a; Meehl

et al. 2006) and were discussed in the IPCC-AR4 (IPCC

2007). Similar to observations and hindcast simulations

forced with atmospheric data (e.g. Maslanik et al. 2007;

Rothrock et al. 2003), the simulated ice volume shows a

considerable decline over the late twentieth to early

twenty-first century in all of the CCSM3 standard runs with

a corresponding reduction in the summer sea ice area.

As discussed by Stroeve et al. (2007), the reduction in

September ice extent in these simulations is consistent with

observed sea ice loss over the satellite record.

3.1 Ensemble integrations

Here we assess the predictability characteristics of the

Arctic ice area. Analysis using ice extent (defined as the

region with greater than 15% ice cover), which is com-

monly used in observational studies, shows the same

qualitative behavior. September ice area for the three sets

of perfect initialization ensemble simulations with a com-

parison to the eight member ensemble of the standard

twentieth to twenty-first century integrations is shown in

Fig. 4. In all three of the perfect initialization ensemble

sets, there is a considerable spread in the September sea ice

area simulated 9 months into the integrations. The standard

deviation in the September ice area across the ensemble

members is lowest for the late twentieth century ensemble

set and generally increases for the ensemble sets with

thinner ice cover, especially Ensemble Set 3 (Table 2) for

which the difference in variance is statistically significant

(at the 95% level) for the September values of Year 2. An

increase in variance with a thinning ice pack is consistent

with previous studies on Arctic sea ice variability (Holland

et al. 2008b; Goosse et al. 2009), and is reflected in the

larger range across the standard twentieth to twenty-first

century ensemble integrations shown by the grey shading.

From the 1979–2008 satellite observations, the year-to-

year changes in September ice area have a significant

negative 1-year lagged autocorrelation (R = -0.59)

meaning that an increase in September ice cover is

typically followed by a decrease in ice cover the next year.

This occurs even with the large downward trend in

September sea ice over this time period because the one-

year reductions in ice are considerably larger than the

recovery that often occurs the next year. A similar lagged

autocorrelation behavior is seen in the members from

Ensemble Sets 1 and 2 (Table 2), where the September ice

area change in Year 1 and Year 2 are significantly correlated

at -0.50 and -0.46, respectively. For Ensemble Set 3, the

correlation is not significant at -0.05. The observed and

simulated negative correlation is likely related to negative

feedbacks, such as the fact that thinner ice cover grows

more rapidly subject to the same forcing. This fundamental

aspect of sea ice thermodynamics gives rise to a negative

feedback with a stabilizing influence on sea ice conditions

(Bitz and Roe 2004). The low correlation in Ensemble Set

3 suggests that the influence of these stabilizing feedbacks

is overwhelmed by other factors such as the inherent var-

iability of the system and positive feedbacks such as that

due to surface albedo changes. The standard deviation in

September ice area increases for the second year of inte-

gration with the increase being largest for Set 3. This

suggests that there is some ‘‘knowledge’’ of the initial

conditions during the first September of integration, which

decreases the following year. The stabilizing feedback

implicit in the ice area change correlation should coun-

teract this but is not strong enough to overcome it.

While the spread among the ensemble members is large,

there are some similar features within each ensemble set.

For example, when compared to September conditions in

the control run several months prior to initialization, many
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of the ensemble members exhibit a change in ice area of a

similar sign (Table 2). This is especially true of Ensemble

Set 2, in which the initial conditions were chosen just prior

to a large September ice loss in the standard CCSM3

control integration. In this ensemble set, all 23 of the

members exhibit a reduction in September ice area com-

pared to the September area of 4.6 million km2 that was

simulated in the control run several months prior to

initialization. Indeed all but one of the ensemble members

simulates a September ice area lower than anything in the

previous decade of the control integration. This suggests

that preconditioning of the ice cover, as represented by the

identical January initial conditions in all of the ensemble

members, plays an important role for the resulting ice area

reduction. Indeed, the January ice thickness used to

initialize the Set 2 integrations is anomalously thin in the

Beaufort/Chukchi/East Siberian Sea region compared to

the standard twenty-first century CCSM3 integrations for a

comparable time period (not shown). It is also notable that

for this ensemble set none of the other ensemble members

has an extreme reduction in ice area of the same magnitude

as the standard twenty-first century scenario run from
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Fig. 4 The timeseries of

September ice area for the three

ensemble sets. The black line
shows the control simulation

from which the ensemble

member initial conditions were

obtained; the colored lines show

the ensemble member

simulations; and the grey
shading shows the range across

the eight standard CCSM3

integrations of the twentieth or

twenty-first century. The thin
solid and dotted black lines
show the mean and plus/minus

one standard deviation from the

multi-century preindustrial

(panel a) and present-day

(panels b and c) control

integrations
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which the initial conditions were obtained (Fig. 5). This

suggests that although preconditioning in the form of an

anomalously thin winter ice pack may be necessary to

initiate a large ice area loss, it is not sufficient to initiate

that loss. Instead, it must be reinforced by sizable intrinsic

variations in the spring and summer atmosphere and/or

ocean conditions, which appear to be quite rare. This is

broadly similar to conclusions on the contributing factors

of the large ice loss in September of 2007 (Stroeve et al.

2008; Kay et al. 2008; Schweiger et al. 2008; Zhang et al.

2008b; Lindsay et al. 2009). In particular, the adjoint

analysis of Kauker et al. (2009) showed that the initial

(March) ice thickness in combination with May–June wind

conditions, and September air temperature explained nearly

90% of the 2007 September sea ice area anomaly (Kauker

et al. 2009).

Over time, the perfect initialization ensemble members

diverge due to the chaotic nature of the system. The spread

in sea ice conditions across the ensemble members results

from variations in dynamic and thermodynamic sources

and sinks of sea ice. The resulting changes in these terms

(i.e. changes in ice melt, growth and divergence) directly

influence the ice thickness and indirectly modify ice area

when, for example, entire regions of the ice cover melt out

in summer. During model run time, the monthly change

in ice volume at each model grid cell that results from

thermodynamic processes and from dynamic processes is

separately diagnosed. Similar diagnostics are computed for

the change in ice area that results from thermodynamic and

dynamic processes. An analysis of these terms allows us to

separate the influence of thermodynamic change versus

dynamic change for the evolving sea ice conditions. The

thermodynamic processes include all growth and melt

terms, including frazil and basal ice formation, snow-to-ice

conversion, and surface, basal, and lateral melting. The

dynamic processes include ice divergence due to transport

and, in the case of ice area change, ridging and rafting

processes that reduce ice area while conserving ice volume.

A diagnosis of how variations in these sea ice mass

budget terms contribute to the scatter in September ice area

across ensemble members provides insight on the role of

intrinsic forcing variability for potential sea ice predict-

ability. We show, for each ensemble set, the correlation

across ensemble members of the Year 1 September sea ice

area and the Arctic basin average change in ice volume

(Fig. 6) and ice area (Fig. 7) since initialization. This is

computed separately for the ice volume and area changes

resulting from dynamic and thermodynamic processes. Put

another way, for each month of simulation (shown on the

x-axis) the total change in ice volume since initialization

due to thermodynamic processes is correlated with the

following September ice area (Fig. 6a). This is similarly

done for ice volume change due to dynamic processes

(Fig. 6b) and for thermodynamically and dynamically

driven ice area change (Fig. 7a, b). Correlations are com-

puted separately for each ensemble set.

For all of the ensemble sets, the scatter across the

ensemble members in the summer thermodynamic (i.e.

melt) driven ice volume change (Fig. 6a) is significantly

correlated to the following September ice area. This indi-

cates that differences in summer ice melt, and the conse-

quent ice thickness, are largely responsible for the spread

in September ice area in the different ensemble members.

In contrast, scatter in the dynamic driven anomalies in ice

volume (i.e. ice export; Fig. 6b) generally show smaller

correlations with the subsequent September ice area.

Indeed, significant correlations only occur for ensemble Set

3 during the summer months and ensemble Set 1 during

September; these are considerably smaller than the corre-

lations with thermodynamically driven ice volume

changes.

Table 2 Statistics for the September ice characteristics from the

different ensemble sets, including the standard deviation of ice area

across the ensemble members, the autocorrelation of the change in

September area from one year to the next for year 1 and for year 2,

and the fraction of ensemble members that exhibit an increase in

September ice area in year 1 compared to the September conditions

obtained just prior to the ensemble set initialization

Standard dev R(Dyr1,Dyr2) Fraction that

increase in Year 1
Year 1 Year 2

Set 1 0.241 0.319 -0.50 0.80

Set 2 0.243 0.351 -0.46 0.0

Set 3 0.341 0.538 -0.05 0.75

Sept Area Change (ENS 2)

5 10 15 20
Ensemble Member

-1.5
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-0.5

0.0

10
6  k

m
2

Fig. 5 The September ice area change in Year 1 for the 23 members

of ensemble set 2. The difference is taken relative to the September

ice area in the control integration that occurred prior to the ensemble

set initialization. The area change in the twenty-first century control

integration that provides the initial conditions for Ensemble Set 2 is

shown by the final ensemble member and the dashed line
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Differences in the ice volume simulation across the

ensemble members affect ice area by influencing the region

that can potentially melt out during summer or by modi-

fying the strength of the ice pack and resulting ice motion

and convergence. An examination of the relationship

between the ice area change terms and subsequent Sep-

tember ice area (Fig. 7) indicates that different mecha-

nisms are important in the different ensemble sets. During

winter, dynamic ice area loss in the Arctic resulting from

export or convergence is balanced by thermodynamic ice

area gain as newly opened water rapidly refreezes. This

leads to an almost perfect anti-correlation between the

Arctic thermodynamic and dynamic sources of open water

during winter (not shown) and causes comparable (but

opposite sign) correlations in Fig. 7a,b for January through

May. It also allows the Arctic Ocean to remain almost

completely ice covered through April in all of the ensemble

sets.

The dynamic and thermodynamic ice area change no

longer balance over the melt season, resulting in a reduc-

tion in ice area. During this time period, it is illustrative to

consider the ice area changes during each month (Fig. 7c,

d), as opposed to the time-integrated changes since

initialization (Fig. 7a, b). For all ensemble sets, ice area

loss resulting from net melt during the summer plays an

important role in the ultimate scatter of September ice

cover across the ensemble members (Fig. 7c). The timing

of these important melt anomalies differs among the

ensemble sets and generally occurs a month earlier in the

thinner ice regime (Set 2 and Set 3) where summer melt

more readily leads to open water formation. Additionally,

the processes that enhance thermodynamic ice area loss
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Fig. 6 The correlation across the ensemble members of the total

change in Arctic averaged ice volume since initialization with the

following September ice area. Shown are the correlations of

September area with (a) the total ice volume change resulting from

thermodynamic processes, (b) the total ice volume change resulting

from dynamic processes. Ensemble Set 1 is in black, Ensemble Set 2

in green and Ensemble Set 3 in red. The dashed line indicates the

95% statistical significance threshold
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Fig. 7 The correlation across

the ensemble members of the

change in Arctic ice area over

time with the following

September ice area. Shown are

the correlations of September

area with (a) the total ice area

change since initialization

resulting from thermodynamic

processes, (b) the total ice area

change since initialization

resulting from dynamic

processes, (c) the monthly ice

area change resulting from

thermodynamic processes and

(d) the monthly ice area change

resulting from dynamic

processes. Ensemble Set 1 is in

black, Ensemble Set 2 in green
and Ensemble Set 3 in red. The

dashed line indicates the 95%

statistical significance threshold
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(melt out) in some ensemble members are different across

the ensemble sets. All ensemble sets exhibit enhanced

summer open water formation for integrations with larger

summer ice volume melt. However, ensemble Set 3 also

has enhanced melt out (thermodynamic ice area loss) in

simulations which have higher dynamic ice area loss dur-

ing the previous winter. This is reflected in the significant

positive correlations (Fig. 7d) found in January and

February for Ensemble Set 3. Indeed, in Set 3, the June

thermodynamic ice area loss (melt out) is significantly

correlated to dynamic ice area loss during winter (at

R = 0.6; not shown). While any winter dynamic ice area

loss quickly freezes over leading to little change in ice area,

it does redistribute the ice and modify the ice thickness

distribution. In particular, enhanced ridging leads to a

broader distribution with a larger area of thin ice, which is

then more able to melt out the following summer. This

appears to play an important role in Set 3, but not in the

other ensemble sets. This is likely related to the thin con-

ditions used for initialization of the Set 3 ensemble mem-

bers. Since thinner ice is weaker and more able to converge

and shear, larger variations in ridging are possible across

the Set 3 ensemble members. That different factors deter-

mine the resulting scatter in simulated September sea ice

conditions for the various ensemble sets, strongly suggests

that different ice thickness regimes and extreme events

have different predictability characteristics.

3.2 Prognostic potential predictability of sea ice

conditions

The potential predictability of the sea ice system can be

quantified by diagnosing how quickly the ensemble simu-

lations diverge and comparing this to the natural variability

in the system (e.g. Koenigk and Mikolajewicz 2008;

Pohlmann et al. 2004). We assess the expected spread due

to natural variability using a multi-century present-day

integration and a multi-century preindustrial integration of

the model. The present-day and preindustrial simulations

have fixed external forcings (e.g. greenhouse gas levels,

top-of-the-atmosphere solar forcing, etc.) that are consis-

tent with observed conditions for 1990 and 1870 time

periods, respectively.

We choose a number of different characterizations of the

intrinsic variability because the variability changes with the

mean climate state (Fig. 8). In a thinner sea ice regime like

the present day control integration, the natural variability

in northern hemisphere sea ice area is generally lower

in winter and higher in late summer-early autumn. The

present-day integration has a similar annual cycle of mean

ice area and Arctic thickness to the scenario runs for the

2010–2020 time period, with the monthly mean values

generally lying within one standard deviation of each other

(not shown). As such, this control integration provides a

long timeseries that allows for robust statistics for com-

parison to Ensemble Sets 2 and 3. The characterization of

natural variability for Ensemble Set 1 is more problematic.

The preindustrial and present-day control integrations

bracket the mean sea ice conditions from this Ensemble

Set. As such, we compare this Ensemble Set to the intrinsic

variability obtained in both of these control runs, which

likely brackets the true intrinsic variability of the climate

model for mean sea ice conditions similar to those of

Ensemble Set 1.

The prognostic potential predictability (PPP) (e.g. Koenigk

and Mikolajewicz 2008; Pohlmann et al. 2004) provides a

measure of the spread across ensemble experiments compared

to the natural variability. It is defined as:

PPPðtÞ ¼ 1� r2
e

r2
c

where re
2 is the variance across the ensemble members at

time t and rc
2 is the variance of the control integration for

the relevant month (Fig. 8). The significance is estimated

using an F-test as in Pohlmann et al. (2004). A PPP value

of 1 corresponds to a perfectly predictable system (i.e. the

ensemble members do not diverge over time), whereas a

PPP value of zero implies no predictability because the

ensemble spread is equal to that expected from natural

variability. While the ensemble spread may not be statis-

tically different than that diagnosed from natural variabil-

ity, it can in practice be slightly higher than rc
2 and lead to

negative PPP values. In this case, PPP is defined to be

identically zero.

Figure 9 shows the PPP for northern hemisphere ice

area for the three different sets of perfect-initialization

ensemble simulations at each month of integration. The

different ensemble sets have some broadly similar char-

acteristics over the 2 years of integration. All of the

ensemble sets show significant potential predictability
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Fig. 8 The standard deviation of northern hemisphere ice area for a

present-day (dash) and pre-industrial (solid) control integration
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during the first few months (JFM) of integration when they

are highly constrained by their respective initial conditions.

During the spring transition season (AMJ), the prognostic

potential predictability generally drops in all cases,

although it remains significant for some months and some

ensemble sets. It then rises again during all or part of the

summer (JAS), depending on the ensemble set. Addition-

ally, all ensemble sets exhibit significant PPP values during

all or part of winter in the second year with following

decreases during the second spring of integration.

While the ensemble sets have these general character-

istics in common, there are some considerable differences

as well. Ensemble Set 1, with relatively thick sea ice

conditions, retains significant potential predictability

throughout most of the first year of integration and has

particularly high values over the summer. It also retains

significant potential predictability during all or most of the

second summer (depending on the characterization of

natural variability used for comparison). Ensemble Set 2

also exhibits significant potential predictability over the
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Fig. 9 The prognostic potential

predictability of northern

hemisphere ice area for the three

Ensemble Sets. In panel a,

the prognostic potential

predictability is assessed

relative to both the present day

(solid) and pre-industrial (dash)

control integrations. The dotted
line indicates the 95% statistical

significance threshold
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spring and summer of Year 1. After April of the second

year, Set 2 has essentially no significant potential predict-

ability except during September of the second year.

Ensemble Set 3 generally has the lowest PPP values. It has

little significant potential predictability from June through

December of Year 1, although September does exhibit

marginally significant predictability in the first year. This

set has no significant PPP values after March of Year 2

except during the final month of integration.

Taken together, these results suggest that regardless of

the sea ice regime, prognostic potential predictability is

generally significant for the first and second winters, ice

area during the spring transition season shows less pre-

dictability, and summer ice area has potential predictability

with a 9-month lead time. Much of the significant winter

predictability is associated with conditions in the Labrador

Sea (not shown), especially in the thick sea ice regime,

which is consistent with results from Koenigk and

Mikolajewicz (2008). Although it varies somewhat for

different ensemble sets, the significant summer predict-

ability during Year 1 is influenced by high predictability

within the Barents Sea region (not shown). This differs

from Koenigk and Mikolajewicz (2008) who found higher,

but not significant, PPP values there. Contrasting the results

from the various ensemble sets suggests that a thicker sea

ice regime generally exhibits higher prognostic potential

predictability in ice area for a longer period of time and

summer ice area is potentially predictable for up to 2 years.

In the thinner sea ice regime, winter ice conditions

generally give less predictive capability for summer ice

conditions, especially after a year.

To understand the reasons for the differences in end of

summer predictability among the ensemble sets, it is

illustrative to consider the location of September sea ice

concentration variability across the ensemble members

(Fig. 10). As expected, the concentration variability pri-

marily occurs along the ice edge and only small anomalies

are present in the thick, perennially ice covered interior

region. Thus, for the thick ice ensemble, the variability is in

the Arctic shelf regions and confined by the Arctic coast. In

the thinner ice regime, the perennial pack is smaller in area.

Initializing with conditions preceding and just following

the large ice loss event, provides some predictability in the

first summer primarily because there is a region along the

Alaskan and Siberian (for Ensemble Set 3) coast that melts

out in all of the ensemble members. This leads to little ice

concentration variance there in Year 1. However, these

regions can potentially exhibit rapid ice growth in the

following fall and achieve relatively thick ice cover at the

initiation of the second year melt season. This can allow

them to maintain a thin sea ice cover through the second

summer such that during Year 2, in the absence of the

identically specified thin preconditioned winter conditions,

these regions do recover sea ice in some ensemble mem-

bers. This leads to an increase in ice area variance and less

predictive potential. In contrast, for the thick ice regime

where large scatter in ice concentration across the ensem-

ble members occurs right up to the coast (i.e. some

ensemble members retain ice along the coast in September

of Year 1), increased ice area variance in year 2 would

require melting out some of the thicker interior ice pack for

some ensemble members. This is quite difficult because of

the thick nature of this ice and the considerable heat that

would be required. This suggests that, compared to ice

cover, ice thickness is predictable on longer timescales;

a point that we return to below.

The winter ice area exhibits potential predictability for a

year in all of the Ensemble Sets. As discussed by Bitz et al.

(2005), the location of the mean winter ice edge is strongly

related to ocean heat flux convergence. It follows, that

variations in ocean heat transport are likely important for

the winter ice edge variability. Because of relatively long

ocean advective timescales this allows for considerable

predictability in the winter ice edge after a single year (and

potentially much longer, although we can not assess this

with our current experiments). This is true across all of the

ensemble sets and is not strongly related to the mean Arctic

climate state.

In contrast to ice area, the Arctic ice thickness shows

significant potential predictive skill for all ensemble sets for

almost the entire 24 months of integration (Fig. 11). This

agrees with the results from Koenigk and Mikolajewicz

(2008) and is also consistent with the lower frequency vari-

ability exhibited by ice volume. Interestingly, while ice area

shows higher potential predictability in a thick ice regime

(Ensemble Set 1), the ice thickness shows lower predict-

ability in this regime. We hypothesize that this is related to

the ice thickness-ice growth rate feedback (Bitz and Roe

2004), which has a stabilizing influence and is more effective

for thin ice cover.

4 Conclusions and discussion

The inherent predictability of Arctic sea ice in the CCSM3

model on seasonal to interannual timescales has been

investigated through the use of perfect initialization

ensemble experiments. These simulations are initialized

with identical ice–ocean–terrestrial conditions on January 1

and integrated for 2 years. We perform three different such

ensemble sets, with different initial conditions, to assess

the role of the mean sea ice state on predictability char-

acteristics. The initial conditions are obtained from a

standard twentieth to twenty-first century integration and

represent the kind of changes in sea ice state that have

occurred during the last 30 years. As such, the results from

M. M. Holland et al.: Inherent sea ice predictability in the rapidly changing Arctic environment

123



this study provide useful information on the potential

forecasting of Arctic sea ice conditions in the rapidly

changing Arctic environment that we are currently

experiencing.

Our results suggest that, regardless of the initial ice

state, the Arctic ice area exhibits potential predictability

during the first few months of integration, which then drops

during the spring transition season, and rises again during

summer. All of the ensemble sets simulate significant

prognostic potential predictability of ice area during the

first September of integration (although it varies consid-

erably across the ensemble sets and is quite low in

Ensemble Set 3). This indicates that winter sea ice pre-

conditioning (i.e. the January sea ice initial state in our

 Sept Variance. Set 1 Year=1

(a)

 Sept Variance. Set 1 Year=2

(b)

 Sept Variance. Set 2 Year=1

(c)

 Sept Variance. Set 2 Year=2

(d)

 Sept Variance. Set 3 Year=1

(e)

 Sept Variance. Set 3 Year=2

(f)

Fig. 10 The region where ice

concentration standard

deviation exceeds 15% for the

different ensemble sets for

September of Year 1 (left
panels) and Year 2 (right
panels). Ensemble Set 1 is

shown in the top panels (a, b),

Set 2 is shown in the middle
panels (c, d), and Set 3 is shown

in the bottom panels (e, f)
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experiments) provides some summer ice area predictive

capability, which is consistent with ice–ocean coupled

model studies (Kauker et al. 2009). As such, efforts should

be made to better observe the Arctic ice thickness distri-

bution, a conclusion also arrived at by the SEARCH

Outlook effort.

A correlation analysis reveals that limits on the pre-

dictability of September sea ice area are primarily related

to intrinsic variations in the thermodynamic-driven ice

volume (i.e. melt/growth) anomalies that then translate into

different amounts of open water formation over the melt

season. Summer (JJAS) melt variations are particularly

effective at driving scatter across the ensemble members,

although for some ensemble sets, winter ice growth

anomalies also play a role. Dynamic driven ice volume and

ice area anomalies have generally a smaller influence on

reducing the September ice extent predictability, except in

Ensemble Set 3. In Ensemble Set 3 integrations, which are

initialized with thin sea ice following a large summer ice-

loss event, there is evidence that variations in the amount

of ridging among the ensemble members in spring are

important for redistributing the ice cover, allowing larger

variations in summer melt-out and affecting the end-

of-summer scatter in ice area.
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Fig. 11 The prognostic

potential predictability of Arctic

basin ice thickness for the three

Ensemble Sets. For Ensemble

Set 1 (panel a), the prognostic

potential predictability is

assessed relative to the present

day (black) and pre-industrial

(red) control integrations. The

dotted line indicates the 95%

statistical significance threshold
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During the second year of integration, all of the

ensemble members exhibit potential predictability for the

winter sea ice conditions. We speculate that this is related

to the role of the ocean (with intrinsically long-timescales)

in determining the winter ice edge. For the remainder of

Year 2, Ensemble Sets 2 and 3 exhibit little potential ice

area predictability. In contrast, Ensemble Set 1 exhibits

significant prognostic potential predictability during the

second summer of integration. Indeed, the potential

predictability is generally higher in this ensemble set

throughout the 2 years of integration. This set is initialized

with thick ice conditions obtained from 1970 of the

CCSM3 twentieth century integration; whereas the other

sets are initialized with sea ice conditions more consistent

with the current observed Arctic conditions. Thus, while

one might expect that the summer Arctic sea ice is

becoming more predictable due to the strong downward

trend, our results suggest that on seasonal to interannual

timescales the opposite is true. Ice area is more predictable

in a thick sea ice regime and future summer ice area will be

harder to forecast with continued thinning of the pack ice.

Additionally from a comparison of Ensemble Set 2 and Set

3, which are initialized just preceding and just following a

large 2007-like summer ice loss event, we find that even

one year changes in the January ice thickness used for

initialization (albeit large changes in this case) modify

the predictability characteristics, with thinner initial ice

conditions (Ensemble Set 3) generally resulting in less

predictive capability.

The difference in summer predictability in different sea

ice regimes appears in many respects to be a simple matter

of geography. The summer ice concentration variability is

concentrated along the ice edge with little variability

present in the thicker interior ice pack. For a thick ice

regime, such as Ensemble Set 1, this variability occurs

along the shelf regions and is confined by the coast. In the

thinner ice regimes prescribed as the initial conditions in

Ensemble Sets 2 and 3, there is a region along the shelf that

melts out in the first summer of all the ensemble members

with consequently little variability there. In the following

year, these regions are able to retain sea ice in some inte-

grations leading to higher variability across the ensemble

members and less inherent predictability.

Our results have implications for the design of sea ice

forecasting systems. In particular, they suggest that his-

torically based observational relationships used in statisti-

cal regression models may have less relevance in future

(or possible present) sea ice regimes. This indicates that

physically based models may have greater utility in future

sea ice forecasting systems. While several ice–ocean cou-

pled modeling systems have been used in the SEARCH

Outlook effort, the lack of feedbacks to the atmospheric

state is a concern that requires further investigation.

Regional coupled climate modeling systems that include

these feedbacks (e.g. Döscher et al. 2009) may provide an

alternative forecasting tool although issues still arise on

whether they can be adequately initialized. Regardless, our

results do suggest that for all sea ice regimes, the intrinsic

atmospheric variability during summer months places a

strong limit on the predictability resulting from winter sea

ice/ocean conditions.

We have only examined simulations initialized on

January 1 for this study, which was necessitated by the data

availability. However, a number of existing seasonal pre-

diction systems forecast end of summer sea ice cover using

springtime information. It is unclear what the potential

predictability of sea ice conditions is given a smaller lead

time. Since our integrations indicate that summertime

thermodynamic forcing was an important factor in reduc-

ing the inherent predictability of end-of-summer ice cover,

it is not clear that a smaller lead time (e.g. initializing with

March conditions) will provide a greatly enhanced poten-

tial predictability. Additionally, this study only assessed

integrations from a single coupled model and issues such as

model biases and model resolution may influence the

simulated predictability characteristics. These issues will

be explored further in future work.
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