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Abstract
Phenological shifts are occurring in many ecosystems around the world. The capacity of species to adapt to changing phe-
nology will be critical to their success under climate change scenarios. Failure to adjust migratory and reproductive timing 
to keep pace with the earlier onset of spring has led to negative demographic effects for populations of species across a 
variety of taxa. For caribou, there have been concerns that earlier spring green-up on calving areas might not be matched by 
earlier migration and parturition, potentially leading to a trophic mismatch with nutritional consequences for parturient and 
lactating caribou cows. However, there is limited evidence supporting these concerns. Here, we investigate the response of 
barren-ground caribou to changing spring phenology using data from telemetry and satellite imagery. From 2004 to 2016, 
we found that the average start of green-up on the calving area advanced by 7.25 days, while the start of migration advanced 
by 13.64 days, the end of migration advanced by 6.02 days, and the date of peak calving advanced by 9.42 days. Despite 
the advancing onset of green-up, we found no evidence for the development of a trophic mismatch because the advancing 
green-up coincided with earlier migration and calving by caribou. Changing snow cover on the late winter and migratory 
ranges was the most supported driver of advancing migratory behavior. The ability of caribou to adjust the timing of migra-
tory and reproductive behavior in response to changing environmental conditions demonstrates the potential resilience of 
the species to some aspects of climate change.

Keywords Climate change · Migration · Trophic mismatch · Rangifer tarandus · Phenology

Introduction

For caribou and other migratory species, the purpose of 
migration is at least in part to increase fitness by moving to 
more suitable habitat for birthing and rearing young (Fryxell 
and Sinclair 1988; Heard et al. 1996; Alerstam et al. 2003). 
Factors that reduce the quantity and effectiveness of these 
important habitats or that disrupt important life history 
stages, such as migration or calving, can have severe nega-
tive consequences for wildlife (Brooks et al. 2002; Bolger 

et al. 2008; Hanski 2011). Although the most imminent 
threat for many caribou (Rangifer tarandus) populations 
remains anthropogenic disturbance (McLoughlin et al. 2003; 
Vors et al. 2007; Festa-Bianchet et al. 2011; Uboni et al. 
2016), rapid environmental change also can modify habitat 
and disrupt species behaviors and interactions (Walther et al. 
2002; Parmesan and Yohe 2003). A key concern regarding 
the effects of climate change on ecosystems is the alteration 
of ecological phenology, or the timing of life history events 
(Parmesan and Yohe 2003). In many species, the timing of 
high energetic or nutritional requirements, such as peak lac-
tation in caribou, has evolved to coincide with peak nutrient 
availability in forage (Klein 1990; Stenseth and Mysterud 
2002; Post et al. 2003; Williams et al. 2017). The loss of life 
history synchrony across trophic levels can result from the 
unequal response of species to environmental changes, and 
this deviation from phenological synchrony is often referred 
to as trophic mismatch (Durant et al. 2007). For caribou, it 
has been suggested that trophic mismatches could arise if the 
annual timing of green-up, corresponding to peak nitrogen 
concentration in forage species (Klein 1970, 1990; Chapin 
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1980), advances with increasing temperatures and snow-
melt, while the timing of parturition remains consistent or 
advances more slowly. These mismatches could reduce the 
temporal overlap between the availability of highly nutri-
tious stages of forage plants and the timing of high-nutri-
tional demands for lactation, potentially resulting in nega-
tive effects on body condition and calf survival (Post and 
Forchhammer 2008). Trophic mismatches, and their negative 
effects on productivity, have been reported in a wide range 
of species (Donnelly et al. 2011), including caribou. Post 
and Forchhammer (2008) reported a trophic mismatch in a 
caribou population in Greenland and its apparent adverse 
effects on reproductive success. However, recent studies on 
Alaskan caribou and reindeer populations in northern Nor-
way and Svalbard have found no evidence of trophic mis-
matches or negative effects on recruitment and calf survival 
from earlier springs (Tveraa et al. 2013; Gustine et al. 2017; 
Veiberg et al. 2017).

In addition to changes in plant community composition 
and phenology (Myers-Smith et al. 2011; Pearson et al. 
2013), climate change is affecting ice formation and break-
up (Sharma and Magnuson 2014) and terrestrial snow cover 
patterns (Barnett et al. 2005; Kunkel et al. 2009; Brown et al. 
2010; Kapnick and Hall 2012). Although regional trends 
are highly variable, earlier spring melt and altered regional 
snowfall trends are occurring in many locations across the 
circumpolar world (Xie et  al. 2015), and the migratory 
behavior of species such as caribou might be sensitive to 
these environmental changes. For example, the amount, 
duration, and hardness of snow cover affect caribou through 
reduced access to forage (Collins and Smith 1991; John-
son et al. 2001) and effects on movement. Thick and soft 
snow requires more time and energy to move through (Fancy 
and White 1985; Nicholson et al. 2016), and ice crusts can 
slow caribou and damage their legs when broken through. 
These factors lead caribou to select areas with less snow for 
ease of movement and forage accessibility (Duquette 1988; 
Johnson et al. 2001). However, caribou also benefit from a 
certain amount of snow and ice along their migratory route, 
particularly to move across frozen water bodies (Leblond 
et al. 2016). Although photoperiod is an important cue for 
migration in many species (Visser et al. 2010), there is evi-
dence to suggest that animals also use local conditions to 
adjust migratory behavior (Gordo et al. 2005; Caro et al. 
2013). Thus, we could expect caribou to time migration in 
the spring with snow and ice conditions that remain con-
ducive to movement. This reasoning is supported by recent 
studies that have reported earlier spring migration departure 
dates following mild winters and delayed migrations when 
snowfall was abundant in the late winter and early spring (Le 
Corre et al. 2017; Gurarie et al. 2019).

The Qamanirjuaq barren-ground caribou herd is pres-
ently the largest population of caribou in Nunavut, Canada 

(Campbell et al. 2010). Each year, the herd migrates from 
its winter range to calving grounds near Qamanirjuaq Lake 
in Nunavut (Fleck and Gunn 1982). As with many other 
caribou populations, the Qamanirjuaq herd has recently 
declined, with surveys indicating that herd abundance has 
decreased from ~ 496,000 animals in 1994 to ~ 348,000 ani-
mals in 2008, and ~ 288,000 animals in 2017 (Boulanger 
et al. 2018). In this study, we analyzed 12 years of Qamanir-
juaq barren-ground caribou telemetry data along with snow 
and vegetation covariates to investigate whether vegeta-
tion and snow phenology are changing on the Qamanir-
juaq range, and if so, whether the migratory and calving 
behavior of the herd is responding to these changes. We 
further sought to test if there is any evidence to support 
the development of a trophic mismatch between resource 
availability and Qamanirjuaq caribou parturition. Based 
on reports of advancing Arctic vegetation and snowmelt 
in the literature (Cleland et al. 2007; Brown et al. 2010), 
we expected to observe some advancement in green-up and 
snowmelt trends. Recent studies have indicated the Rangifer 
populations can adjust reproductive and migratory behav-
ior in response to environmental conditions (Le Corre et al. 
2017; Paoli et al. 2018, 2019; Gurarie et al. 2019), and so 
we anticipated that some metrics of Qamanirjuaq caribou 
reproductive and migratory phenology would respond to 
changes in green-up and snow conditions. Additionally, our 
own observations during aerial surveys and reports in the 
literature (Fleck and Gunn 1982) indicate that the Qamanir-
juaq herd typically calves before green-up, and so we did not 
predict that a trophic mismatch, in the sense of vegetation 
green-up becoming earlier with respect to parturition (e.g., 
Post & Forchhammer 2008), would have developed over the 
study period.

Materials and methods

Study area

The annual Qamanirjuaq barren-ground caribou range cov-
ers approximately 310,000 km2 of Canada across two prov-
inces and two territories. Their range extends from north-
eastern Saskatchewan and the southeastern portion of the 
Northwest Territories into northern Manitoba and proceeds 
north along the coast of Hudson Bay into the Kivalliq region 
of Nunavut, ending near the southern shores of Baker Lake 
(approximately 56.5° to 64° N, 91° to 106° W). The calving 
and summer ranges are entirely within the Nunavut territory. 
During the late spring and summer, areas of continuous per-
mafrost, bedrock outcrops, sandy granitic tills, eskers, and 
large tracts of wetland characterize the Qamanirjuaq herd’s 
range. The dominant land cover is shrub tundra, with Betula 
nana, Salix spp., and Alnus crispa occurring in warmer and 
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drier areas, and Salix spp., Sphagnum spp. and Carex spp. 
found in wetter areas (Campbell et al. 2010).

Caribou movement behavior and range use

We used an individual-based movement method to estimate 
key changes in movement behavior for 115 GPS-collared 
female caribou. For each individual in the year 2004, and 
from 2006 to 2016, we estimated the beginning and end of 
spring migration (we considered the end of spring migration 
to be the start of the calving period), the date of peak calv-
ing, and the end of the calving period. Collar data from 2005 
were insufficient for our analysis and are not included here. 
Some animals were collared for multiple years, providing 
a total of 228 estimated caribou calving periods and 165 
estimated spring migrations. Collar deployment was often 
performed during the spring migration, which reduced the 
number of caribou used to estimate the start of migration in 
some years. The number of animals tracked over the study 
period changed annually: for the calving period estimates, 
we analyzed a minimum of 5 animals in 2004 and a maxi-
mum of 41 animals in 2013 (mean 19, SD 10), and for the 
start of migration, we analyzed a minimum of 4 animals in 
2004 and 32 in 2011 (mean 14, SD 9). The fix rate of collars 
changed over the study period and included frequencies of 
1 day (57 individuals), 12 h (7 individuals), 6 h (13 individu-
als), and 4 h (50 individuals).

Consistent changes in daily movement rates were used 
to determine changes in movement behavior (e.g., from 
migration to calving), and to identify key phenological traits. 
Following the typically low daily movements of the more 
sedentary winter period, caribou movement rates increase 
dramatically at the beginning of migration. Our method 
estimates the start of migration as the first of three consecu-
tive days of movement rates above 10 km per day. Simi-
larly, movement rates decline at the end of migration when 
caribou reach their calving area and we estimated the end of 
migration as the first of three consecutive days with move-
ment rates below 10 km per day. Peak calving is typically 
defined for barren-ground caribou as the date at which 50% 
of calves have been born. We did not have calving survey 
data to identify this date for most years, and so, instead, 
we estimated peak calving for each individual (reflecting 
the likely timing of parturition) as the date with the lowest 
daily movement rate after migration but before the increased 
movement of the post-calving period (Chen et al. 2018).

A three-day window was chosen to minimize the like-
lihood that short bursts of high or low movement would 
be identified as the beginning or end of migration. The 
threshold of 10 km per day was chosen after considering 
previous work on Qamanirjuaq movement behavior that 
found average late-winter movement rates of 4.17 km/day, 
average spring migration movement rates of 11.98 km/day, 

average calving movement rates of 8.67 km/day, and average 
post-calving movement rates of 14.65 km/day (Nagy 2011). 
After estimating the dates of changes in movement behavior, 
each individual’s movement pattern was visually inspected 
to assess whether the algorithm had selected unrealistic or 
erroneous dates. If our method could not clearly identify the 
changes in movement behavior for an individual in a given 
year, the individual was excluded from that year’s analysis 
(n = 19). We note that we were unable to validate our esti-
mates of peak calving dates or confirm whether a collared 
female was pregnant due to a lack of corroborating physical 
or observational data. However, we suggest that the timing 
of minimum movement of collared cows provides an approx-
imation of peak calving behavior across females due to the 
usually synchronized calving behavior of barren-ground car-
ibou. As with other cervid species (e.g., moose (Alces alces): 
Bowyer et al. 1999; white-tailed deer (Odocoileus virgin-
ianus): Carstensen et al. 2003; mule deer (O. hemionus): 
Long et al. 2009), changes in the movement behavior of par-
turient cows can be used to estimate the timing of calving. 
Following parturition caribou cows slow for several days 
when newborn calves restrict movement (Griffith et al. 2002; 
Nagy 2011; DeMars et al. 2013; Chen et al. 2018), and so 
this period of depressed movement rates estimates the tim-
ing of parturition across pregnant cows within a group. Our 
experience using collar movement rates to infer parturition 
to facilitate aerial abundance surveys suggests this method 
works well and has been successfully deployed during mod-
ern mainland migratory calving ground surveys in Nunavut 
and the Northwest Territories (Campbell et al. 2010; Bou-
langer et al. 2017). Due to the aggregation of females during 
this period, a relatively small proportion of collared females 
represent remarkably well the calving behavior of the herd as 
a whole (Couturier et al. 1996; Campbell et al. 2010; Nagy 
and Campbell 2012).

To define the spatial extent of the calving range, we 
extracted telemetry relocations pooled across individual 
caribou each year during the estimated calving period. We 
then calculated the 90% contour of the utilization distri-
bution from these points and used its extent to define an 
annual calving polygon for each year. For trend analysis, we 
required a standard area over which to analyze environmen-
tal covariates, and so all annual polygons from 2004 to 2016 
were combined to determine a total calving range across 
years. Utilization distributions were calculated using the 
adehabitatHR package (Calenge 2006) in R (R Core Team 
2019). To delineate a winter range polygon, we pooled cari-
bou winter locations across years, with previous work on the 
Qamanirjuaq herd informing the dates delineating the winter 
period (Nagy 2011). The 90% contour of the utilization dis-
tribution calculated from these locations defined the winter 
range polygon. The spring migration polygon was defined 
similarly by the 90% contour of the utilization distribution 
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of caribou locations during the month of May. The average 
migratory period over the study duration was from the 122nd 
to the 158th days of the year (~ May 1 to June 6 depending 
on whether a leap year).

Vegetation phenology

The onset of vegetation green-up is typically associated with 
peak nitrogen concentration in Arctic plants (Klein 1970, 
1990; Chapin 1980). To estimate the beginning of green-
up annually on the Qamanirjuaq calving area from 2004 to 
2016, we used a documented relationship between remotely 
sensed normalized difference vegetation index (NDVI) and 
maximum nitrogen concentration of tundra vegetation, 
whereby the date at which NDVI reaches half its annual 
maximum reasonably predicts peak nitrogen concentration, 
and by association, green-up (Doiron et al. 2013, 2015). 
NDVI values were derived from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) imagery from the 
Terra and Aqua platforms (MOD13Q1 and MYD13Q1 ver-
sion 5) at 250-m spatial and 16-day temporal resolution. The 
16-day resolution is offset between Terra and Aqua, allowing 
an 8-day resolution when combining the data streams. We 
used cubic spline interpolation to estimate daily NDVI. A 
snow cover mask was applied when deriving NDVI values. 
We chose MODIS imagery for analysis because previous 
studies have identified it as a preferred data source compared 
to others such as the Advanced Very High Resolution Radi-
ometer for vegetation phenology at northern latitudes (Zeng 
et al. 2013). To test for relationships between spring tem-
perature and green-up, we accessed daily temperature data 
for the Qamanirjuaq range from the CircumArctic Rangifer 
Monitoring and Assessment network’s caribou range climate 
database (Russell et al. 2013). This database is derived from 
NASA’s Modern-Era Retrospective Analysis for Research 
and Applications (Rienecker et al. 2011).

Snow cover trends

Snow cover data from 2004 to 2016 were produced through 
the interpretation of MODIS fractional snow cover origi-
nating from daily MODIS Terra MOD10A1 version 6, pro-
duced at 500-m grid cells. The study area is contained within 
four MODIS tiles, h12_v02, h12_v03, h13_v02 and h13_
v03, which were mosaicked to form single daily snow cover 
images from April 1 to June 30. Snow cover in MODIS is 
derived from an algorithm based on the normalized differ-
ence snow index (NDSI), NDVI for forested areas, a ther-
mal mask, and a cloud mask (Hall et al. 2002). Fractional 
snow cover is determined through regression equations for 
NDSI (Salomonson and Appel 2004) and is reported as val-
ues of 0–100% (i.e., the fraction of area covered by snow 
within a grid cell). MOD10A1 is a semi-classified product; 

so for grid cells not assigned a fractional snow amount, an 
ancillary numerical classification between 101 and 254 
was assigned for properties such as inland lakes or cloud 
cover. Fractional snow cover for the study area was deter-
mined daily and produced as the average of grid cells, each 
of which has a snow cover value of 0–100%. We derived 
snow cover metrics over the winter range polygon in late 
April (last 2 weeks), the migratory corridor polygon in early 
May (first 2 weeks) and all of May, and the calving polygon 
over the average calving period across all years of the study 
(June 6–26). All spatial manipulations were conducted with 
ESRI’s ArcGIS 10.5 and database manipulation and calcula-
tions were conducted with R version 3.4.1 using R Studio 
(R Core Team 2019).

Influence of phenology on caribou calving

To investigate the influence of climate and environmental 
conditions on the timing of caribou calving and migration, 
we built models using snow cover and vegetation covariates 
collected from satellite imagery (Table 1). We fitted linear 
mixed-effects models using individual as a random effect 
to account for inherent differences in movement behavior 
between individuals that we could not capture otherwise. 
Model selection was performed with Akaike’s Information 
Criterion corrected for small sample size (AICc), and mod-
els within 2 ΔAICc were considered competitive (Burnham 
and Anderson 2002). To test for potential bias from different 
radio collar fix rates, we also tested whether including the fix 
rate of collared individuals improved model fit.

We defined the annual mismatch between caribou and 
their forage as the number of days between peak nitrogen 
concentration (green-up) and peak parturition dates for the 
herd. We calculated the geodesic distance between an indi-
vidual’s location at the beginning and end of their estimated 
migration. The temporal length of migration was determined 
by the number of days between the estimated start and end 
of migration.

We tested models with both the standard deviation in 
snow cover and mean snow cover to represent snow condi-
tions across the study area. Through our exploratory analy-
sis, we found that standard deviation, reflecting variability 
in snow cover across the study area, typically performed 
better than mean snow cover values in our models. Because 
of this, most of our models include variability in snow cover 
to provide an index of snow conditions for a given area and 
time series, where higher variability (standard deviation) 
reflected patchy or melting snow conditions (increased 
standard deviation in snow cover was inversely correlated 
with mean snow cover [r = − 0.88, P ≪ 0.01]). In our context 
of deriving snow cover metrics from satellite imagery, the 
use of variability (through standard deviation) over mean 
values is intuitive for two main reasons. A small amount of 
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snow in terms of thickness might still provide a relatively 
high snow cover measure, and remote measures of snow 
cover are likely to be more variable during periods when 
snow is melting and bare ground is becoming visible.

We plotted the autocorrelation functions for all time 
series to identify any significant temporal autocorrelation 
in the data. We tested for multicollinearity between predic-
tor variables with variance inflation factors. All statistical 
analyses were performed with R version 3.4.1 (R Core Team 
2019).

Results

Vegetation and snow phenology

No significant temporal autocorrelation was detected in 
any of the time series analyzed, and so we report the trends 
identified using linear regression for statistical inference. 
Annual estimates of green-up on the Qamanirjuaq calv-
ing ground indicated a weak temporally advancing trend 
over the study period by approximately 7.25 days (year: 

β = − 0.60, SE = 0.54, 95% CI [− 1.80:0.59]) (Fig. 1). In 
several years of the study period (e.g., 2006, 2014), esti-
mated green-up occurred much earlier (~ 10 days) than 
would be predicted by our linear model fit. As would be 
expected, earlier green-up was strongly correlated with 
June temperature on the calving range (r = 0.84, P < 0.01) 
(temperature data from NASA’s Modern-Era Retrospective 
Analysis for Research and Applications; Rienecker et al. 
2011; Russell et al. 2013).

We did not find any meaningful trends in mean snow 
cover on the three seasonal ranges analyzed (Fig.  2). 
However by examining statistics other than the mean, 
it appears that some changes in snow phenology have 
occurred. During half of the calving periods between 2004 
and 2011, mean snow cover on the calving ground was 
greater than 30%; whereas from 2012 to 2016, the highest 
mean snow cover was 13.76%. Increased snow cover on 
the Qamanirjuaq calving range during the calving period 
was related to later green-up (r = 0.67, P = 0.01). Over 
the study period, we also found an increase in snow cover 
variability during migration (year: β = 0.94, SE = 0.49, 
95% CI [− 0.15:2.02]), particularly from 2011 onward. 

Table 1  Comparison of models 
for the start of migration, end 
of migration, peak calving 
dates, and length of migration 
in 2004, and 2006–2016 of the 
Qamanirjuaq barren-ground 
caribou herd using Akaike’s 
Information Criterion corrected 
for small sample size  (AICc)

SC snow cover, MSC migratory corridor snow cover, WSC winter snow cover, SD standard deviation

Behavior Model ΔAICc ωi

Start of migration Early May MSC SD + Late April WSC SD + Migration dis-
tance + (1|individual)

0.00 1.00

Late April WSC SD + Migration distance + (1|individual) 35.50 0.00
Early May MSC SD + Migration distance + (1|individual) 40.56 0.00
Late April WSC + Migration distance + (1|individual) 61.33 0.00
Migration distance + (1|individual) 78.22 0.00
(1|individual) 130.25 0.00

End of migration May MSC SD + Migration distance 0.00 0.53
May MSC SD + Migration distance + Calving SC 1.35 0.27
May MSC SD + Migration distance + Green-up 2.06 0.19
May MSC SD + Green-up 8.58 0.01
Green-up 46.43 0.00
Intercept only 58.24 0.00
Migration distance 59.50 0.00

Peak calving May MSC SD + Calving SC + (1|individual) 0.00 1.00
May MSC SD + Green-up + (1|individual) 11.45 0.00
May MSC SD + (1|individual) 18.88 0.00
Calving SC + (1|individual) 23.89 0.00
Green-up + (1|individual) 28.16 0.00
(1|individual) 63.73 0.00

Migration length May MSC SD + Late April WSC SD + Migration distance 0.00 0.79
Late April WSC SD + Migration distance 2.65 0.21
May MSC SD + Migration distance 39.95 0.00
Migration distance 41.16 0.00
May MSC SD + Late April WSC SD 56.27 0.00
Intercept only 94.25 0.00
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Fig. 1  Estimated start of 
green-up on the Qamanirjuaq 
barren-ground caribou calving 
range from 2004 to 2016 (year: 
β = − 0.60, SE = 0.54, 95% 
CI [− 1.80:0.59]). DOY: day 
of year
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Fig. 2  Percent snow cover from 2004 to 2016 for three seasonal 
ranges of the Qamanirjuaq caribou herd: a Late April (Day of year 
[DOY] 105–120) winter range, b May (DOY 121–153) migratory 
range, c Early June (DOY 158–177) calving range. No significant lin-

ear trends exist in the mean values; however, there was an increase 
in standard deviation of May migratory range snow cover (year: 
β = 0.94, SE = 0.49, 95% CI [− 0.15:2.02])
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From 2004 to 2010, average standard deviation in snow 
cover during migration was 10.3%; while from 2011 to 
2016, it doubled to 20.6%.

Migratory and calving phenology

All measures of caribou phenology that we estimated 
(migration start, end, and peak calving) advanced tem-
porally over the study period, although the trends were 
weak. The average start of spring migration advanced 
by approximately 13.64 days from 2004 to 2016 (Fig. 3, 
year: β = − 1.14, SE = 0.25, 95% CI [− 1.62:− 0.65]), the 
average end of spring migration advanced by approxi-
mately 6.02 days (Fig. 3, year: β = − 0.50, SE = 0.12, 
95% CI [− 0.75:− 0.26]), and the average date of peak 
calving advanced by 9.42 days (Fig. 3, year: β = − 0.79, 
SE = 0.09, 95% CI [− 0.96:− 0.61]).

Influence of environmental phenology on caribou 
calving

Based on weight of evidence, our models suggested that 
snow conditions on the Qamanirjuaq winter range provide 
a cue for the start of migration, and snow conditions dur-
ing migration influence the time taken to reach the calving 
ground (Table 1, Fig. 4). Our most supported models indi-
cated that increasing variability in late April snow cover on 
the winter range, and in May snow cover along the migratory 
route resulted in earlier arrival on the calving range (Table 2, 
Fig. 5). The date of peak calving was best explained by snow 
conditions in May along the migratory route and snow cover 
on the calving ground during the average calving period 
(Table 1, Fig. 6). The most supported model for the length 
of the migration included the distance migrated, snow condi-
tions along the migratory route in May, and late April snow 
conditions on the winter range (Table 2). Caribou took 
longer to migrate further distances, and more variable snow 
conditions increased the length of migration (Fig. 7).
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There was no discernible trend in the “mismatch” 
between estimated dates of parturition and green-up over 
the study period (Fig. 8). The mean date of peak calv-
ing occurred an average of 3.32 days (SE = 0.45, 95% 
CI [−  4.20:−  2.44]) before the start of green-up and 
the herd typically arrived at the calving area 9.42 days 
(SE = 0.49, 95% CI [− 10.11:− 8.19]) before green-up 
began. Green-up began before the mean date of peak par-
turition in only two of the twelve years considered (2006 
and 2014).

Two of our final models (end of migration and length 
of migration) did not include random effects because they 
explained little variability in the response (Table 1). For 
the end of migration, two of the models we compared were 
within 2 AICc, and so could be considered as competing 
(Table 1). However, these models differed only by an addi-
tional parameter, with the larger model having a ΔAICc of 
1.35 over the smaller. Following Arnold (2010), we dis-
missed the potentially competitive model as containing an 
additional uninformative (in this case) parameter. Including 
a fix rate covariate did not improve the fit of any of our 
models.

Discussion

We evaluated temporal trends in a number of phenologi-
cal indicators for barren-ground caribou and their habitats. 
We aimed to understand how barren-ground caribou spring 
migratory and calving behavior might respond to phenologi-
cal changes in the environment and to assess the evidence 
for trophic mismatch development in our study system. From 
2004 to 2016, we found advancement in the annual timing of 
the start and end of migration, and of peak calving. We also 
found evidence for declining snow cover along the migra-
tory corridor (Fig. 2) and for earlier green-up on the calving 
ground. These results provided several potential environ-
mental drivers for the observed advancement in migratory 
and calving behavior, which we evaluated for support using 
a weight of evidence modeling approach. Our results sug-
gested that snow conditions on the winter range and along 
the migration route were the primary driver for advancing 
migratory behavior.

Caribou appeared to use winter range snow conditions as 
an environmental cue for migration. Late-winter and early-
spring conditions seemed to provide some information about 
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the likely conditions of the calving ground because there 
was moderate correlation between standard deviation in 
snow cover along the migratory route and date of green-
up on the calving ground (r = − 0.61, P < 0.05). Thus, by 
timing migrations to conditions that remain amenable to 
movement, at least at the proximal end of the migratory 
corridor, caribou might coarsely anticipate the conditions 
of their destination. Our findings agree with those of other 
recent publications in which milder winter conditions were 
correlated with earlier migration departures (Le Corre et al. 
2017; Gurarie et al. 2019). However, Le Corre et al. (2017) 
found that mild spring conditions delayed arrival on the 
calving range; while in our study, declining snow cover dur-
ing migration advanced arrival on the calving range (end of 
migration), although caribou took a longer time to migrate 
in years with less snow. In our study system, caribou appear 
to have compensated for the slower pace of migration with 
earlier departure dates.

Consistent with some studies on long-distance avian 
migrants (Cotton 2003; Gordo et al. 2005), our results sup-
port the importance of winter range conditions as a driver for 
the timing of spring migration and ultimately arrival on the 
calving or breeding grounds. Snow conditions, icing condi-
tions, and lake and river ice formation and quality are critical 
to barren-ground caribou migration. Ease of movement and 
energy expenditure during this period are largely determined 

by snow conditions, with thick soft snow, ice crusts, and 
slush hindering movement (Fancy and White 1987; Nichol-
son et al. 2016). Sufficient ice thickness on water bodies 
along the migratory route allows caribou to make crossings 
safely (Miller and Gunn 1986). Caribou are known to wait 
for adequate ice conditions before making crossings (Poole 
et al. 2010) and to skirt or avoid water bodies with thin or 
no ice (Leblond et al. 2016). Sharp ice crusts from rain-on-
snow or thaw–freeze events also can cause damage to the 
lower legs of caribou when they break through to the softer 
snow underneath, leading not only to pain and discomfort 
but also to rapid transmission of diseases such as hoof-rot 
(Valkenburg et al. 2003). These snow conditions are more 
likely during warmer weather and when snow is melting, 
providing a possible mechanism for the observed increase in 
migration time in years with earlier snow melt. Along with 
our findings, these examples support the importance of snow 
and ice conditions during spring caribou migrations and the 
adaptive value for barren-ground caribou to use local snow 
conditions on the winter and early migratory ranges as a cue 
for migration.

We found that peak calving occurred earlier in years with 
less snow on the calving area and along the migratory route. 
Although the timing of parturition in caribou is primarily 
related to the timing of the rut and the length of gestation, 
some plasticity in the length of gestation could be selectively 
advantageous and allow otherwise underweight fetuses 
longer developmental periods to increase the likelihood of 
survival (Bergerud et al. 2008). Plasticity in the length of 
gestation might then allow for some modification of the tim-
ing of parturition depending on annual conditions on the 
calving area. We would not expect this effect to dramatically 
override nutritional effects throughout gestation or female 
condition coming out of the previous summer (Cameron 
et al. 1993; Gerhart et al. 1997; Pachkowski et al. 2013), 
and the lesser influence of calving area conditions on peak 
calving can be seen in the smaller effect sizes of environ-
mental predictors on peak calving than the other behaviors 
modeled (Table 2). Chen et al. (2018) found that peak calv-
ing dates of the Bathurst barren-ground caribou herd were 
altered by both the previous year’s conditions and the start 
of the growing season in the current year, and Paoli et al. 
(2018) documented earlier reindeer calving dates in response 
to reduced April snow cover. Both of these examples support 
our findings that spring conditions can alter the timing of 
calving in the same year.

Whereas there have been some reports of advancing 
breeding phenology in response to changing environmen-
tal conditions in avian and ungulate species (e.g., Moyes 
et al. 2011; Dunn and Møller 2014), very few studies have 
reported climate-mediated advancement in the breeding phe-
nology of an Arctic ungulate (Paoli et al. 2018, 2019). Le 
Corre et al. (2017) recently investigated the effects of climate 

Table 2  Parameter estimates of most supported linear and linear 
mixed-effects models for the timing of spring movement behavior of 
the Qamanirjuaq barren-ground caribou herd

SC snow cover, MSC migratory corridor snow cover, WSC winter 
snow cover, SD standard deviation
a Fixed effects only

Behavior modeled β SE

Start of migration
 Intercept 149.67 2.01
 Early May MSC SD − 0.47 0.07
 Late April WSC SD − 0.80 0.11
 Migration distance − 0.40 0.03

End of  migraiona

 Intercept 163.86 1.11
 May MSC SD − 0.52 0.06
 Migration distance 0.07 0.02

Peak calving
 Intercept 166.20 1.16
 May MSC SD − 0.27 0.05
 Calving SC 0.10 0.02

Migration  lengtha

 Intercept 10.85 2.23
 May MSC SD 0.21 0.10
 Late April WSC SD 0.90 0.13
 Migration distance 0.33 0.04
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conditions on migration phenology of caribou in northern 
Quebec and Labrador, Canada. Although they observed an 
advancement of spring migration departure dates, they found 
no trend in dates of arrival on the calving area, which sug-
gested deteriorating conditions for movement during migra-
tion in the spring. Chen et al. (2018) reported that peak calv-
ing dates in the Bathurst barren-ground caribou herd likely 
resulted from cumulative climate-driven habitat changes 
across multiple years, but did not find a temporal trend in 
the timing of parturition. Paoli et al. (2018) found that the 
calving of a population of reindeer in Finland had advanced 
by around 7 days between 1970 and 2016 in response to 
reduced April snow cover and warmer spring temperatures.

Our findings suggest the existence of two phenomena. 
First, it appears that changes to spring phenology, at least in 
terms of snowmelt and vegetation green-up, have occurred 
across the Qamanirjuaq herd’s range. Second, it appears 
that over the study period, phenological changes on the 
herd’s winter and migratory ranges have allowed caribou 
to keep pace with changes occurring on the calving range. 
Because of this, we observed no trend in the temporal sepa-
ration between green-up and calving over the study period, 

and, therefore, no support for the development of a trophic 
mismatch (Fig. 8). This lack of trend results from the simi-
lar magnitude in advancement of snowmelt, green-up, and 
calving. We must note that although we are confident that 
in general a small number of collared cows can reflect the 
spatial distribution of larger numbers female caribou dur-
ing the calving period, as sample size decreases, the chance 
of not capturing behavior representative of the entire herd 
increases. In some years, our sample size is relatively low 
(i.e., 5 tracked animals in 2004, 9 tracked animals in 2010), 
and so some degree of caution is necessary in our results 
and interpretation.

The vulnerability of a species to the effects of trophic 
mismatch depends partly on their life history strategies. 
For example, animals that undertake long-distance migra-
tions might be more susceptible to trophic mismatches 
than non-migratory species (Both et  al. 2009). Species 
with more proximate seasonal ranges, such as the caribou 
in this study, may be better positioned to adjust to pheno-
logical changes that arise at comparable rates across their 
total annual range. Both Veiberg et al. (2017) and Gustine 
et al. (2017) suggested that because caribou and reindeer are 
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primarily capital breeders (Taillon et al. 2013), the influence 
of spring phenology should be less important than that of 
maternal winter body condition on reproductive success, and 
this strategy for financing reproduction could mitigate the 
effects of changing or variable spring phenology (Williams 
et al. 2017). Substantial evidence, including from this study, 
indicates that many barren-ground caribou populations often 
calve well in advance of green-up (Fleck and Gunn 1982; 
Reimers et al. 1983; Crête and Huot 1993; Bergerud et al. 
2008; Gustine et al. 2017; Veiberg et al. 2017; see review 
by Mallory and Boyce 2018), reducing the potential impor-
tance of concurrent timing of these events. Although barren-
ground caribou are well-adapted to highly variable and often 
difficult conditions during parturition, cows and calves cer-
tainly benefit from earlier access to high-quality forage and 
improved nutritional income at this time of year. In fact, the 
early onset of spring can benefit caribou cows and calves by 
providing earlier access to high-quality forage that supple-
ments the nutritional costs of lactation (Pettorelli et al. 2005; 
Cebrian et al. 2008; Helle and Kojola 2008; Couturier et al. 
2009; Tveraa et al. 2013). For example, Paoli et al. (2019) 

reported that reindeer calves in northern Finland were born 
heavier and had higher over-summer survival in years with 
an earlier onset of vegetation growth. Accessible and nutri-
tious forage near parturition and during lactation remains 
important, and it stands to reason that caribou which can 
maintain calving behavior that keeps pace with changes to 
forage phenology might have better reproductive success 
than those which do not. Although the evidence for the pos-
sible development of a true “trophic mismatch” for most 
Rangifer populations examined is scant, the timing of the 
onset of vegetation growth can have consequences for calf 
and cow nutrition, and phenological changes that reduce 
either the availability or quality of forage at this time of year 
will still have some implications for these northern ungulates 
(Couturier et al. 2009; Tveraa et al. 2013; Paoli et al. 2019).

Though we have insufficient data to investigate links 
between advancing reproductive and migratory phenology 
with demographic parameters, studies of other species pro-
vide basis for speculation. Analysis by Møller et al. (2008) 
revealed that European bird species with migratory behav-
ior that had not advanced in response to changing climate 
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conditions experienced stronger population declines than 
species that had advanced the timing of their migrations. 
Similarly, the inability of roe deer (an income breeder) in 
France to adjust their breeding phenology to cope with ear-
lier spring onset resulted in negative demographic effects in 
the population (Plard et al. 2014). In contrast, the reproduc-
tive phenology of some northern mammals such as red deer 
(Cervus elaphus; Moyes et al. 2011) has responded strongly 
to changing climate conditions, with advancing parturition 
dates and other phenological traits. These examples suggest 
that the apparent ability of barren-ground caribou to adjust 
their migratory and reproductive phenology in response to 
the earlier onset of spring could provide resilience to cli-
mate change. However other factors, such as anthropogenic 
disturbance, can also disrupt caribou migratory and calv-
ing behavior. Caribou have been widely reported to avoid 
anthropogenic disturbance and negatively respond to human 
activity (Cameron et al. 2005; Johnson et al. 2005; Vistnes 
and Nellemann 2008; Festa-Bianchet et al. 2011; Boulanger 
et al. 2012; Johnson and Russell 2014), and in some cases, 
these disturbances have disrupted the migratory behavior 
of individuals (Mahoney and Schaefer 2002; Vistnes et al. 
2004; Wilson et al. 2016). The potential for caribou to adjust 
migratory behavior in response to changing environmental 
cues could be hampered by novel disturbances along their 
migratory routes, and it is, therefore, imperative that deci-
sion makers give adequate weight to these effects when con-
sidering human activities on caribou ranges.

Our analysis indicates that in years with more variable 
snow conditions and earlier snowmelt, caribou spend longer 
periods migrating (Fig. 7). At some point, longer periods 
spent migrating could have negative implications for cari-
bou. Barren-ground caribou expend substantial resources 
during migration at a time when forage resources are poor. 
Longer durations spent in poor forage conditions during 
spring migration could negatively affect the condition of 
cows and calves, potentially reducing calf survival (Crête 
and Huot 1993; Gerhart et al. 1996; Sharma et al. 2009).

Conclusions

Our study reports climate-mediated advancement in the 
reproductive phenology of an Arctic ungulate. This advance-
ment results from changing spring snow conditions on the 
caribou herd’s winter and migratory range that provide 
earlier cues for migration and calving. Earlier calving and 
migratory behavior have allowed caribou to keep pace with 
earlier green-up, and we found no evidence to suggest the 
development of a detrimental trophic mismatch. In fact, as 
shown by their life history characteristics and empirical evi-
dence (Taillon et al. 2013; Gustine et al. 2017), Rangifer 

populations appear unlikely to be broadly susceptible to 
trophic mismatches at the timing of parturition.

Caribou and reindeer have huge socioeconomic impor-
tance across the circumpolar world and the ways in which 
a changing climate might affect the conservation of these 
populations has become an important area of research (e.g., 
Sharma et al. 2009; Turunen et al. 2009; Uboni et al. 2016). 
Although the potential consequences of climate change for 
Rangifer populations are many (Mallory and Boyce 2018), 
we suggest that the ability of caribou to adjust calving and 
migratory behavior in response to shifting environmen-
tal cues could be a critical behavior for climate change 
adaptation.
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