

Fluorimètres et capteurs à diffusion ECO

10/2014, Edition 4

Manuel d'utilisation

Section 1 Caractéristiques techniques	3
1.1 Mechanical	3
1.1.1 Connecteur à 6 contacts	. 3
1.1.2 Connecteur à 3 contacts	. 4
1.2 Caractéristiques électriques	4
1.3 Communications	. 4
1.4 Caractéristiques optiques	4
1.4.1 Fluorimètre à un paramètre	4
1.4.2 Capteur à diffusion à un paramètre	5
1.4.3 Capteur fluorimètre de turbidité à deux paramètres	5
1.4.4 Fluorimètre à trois paramètres et diffusion	5
Section 2 Utilisation et maintenance	7
2.1 Verification du fonctionnement du capteur	7
2.1.1 Vérification de la sortie de données analogiques	8
2.2 Préparation du capteur en vue du déploiement	9
2.3 Contrôle des données	9
2.3.1 Contrôle des données	9
2.4 Obtention des données du capteur	10
2.5 Autres opérations	10
2.5.1 Définition de la date et de l'heure	11
2.5.2 Réglage des options pour la collecte des données	11
2.5.3 Modification des vues dans l'onglet Plot Data (Traçage de données)	13
2.6 Maintenance du capteur	13
2.6.1 Nettoyage et lubrification du connecteur passe-cloison	13
Section 3 Informations de référence	15
3.1 Eléments fournis	15
3.2 Etalonnage	15
3.3 Caractérisation	15
3.4 Caractérisation en contexte	15
3.4.1 Store field characterization values in device file	17
3.4.2 Enregistrement des valeurs de la caractérisation en contexte dans le capteur	17
3.5 Configuration spécifique du fluorimètre de la chlorophylle	18
3.6 Fichiers de périphérique	18
3.7 Utilisation du programme de terminal	20
3.7.1 Opérations courantes du programme terminal	20
3.7.2 Utilisation du programme de terminal pour les capteurs avec mémoire interne	21
3.7.3 Différences entre ECOView et le programme de terminal	21
Section 4 Equinament on option	22
A 1 Câble de test	23
1 2 Piles internes	23
1.2.1 Retrait des niles	20
4.2.2 Remlacement des niles	25
4.3. Nettoyeur d'ontiques et facade en cuivre	26
A 3.1 Entretien du nettoyeur d'ontiques et de la facade	26
4.4 Thermistance externe	20 28
4.5 Sonde de pression	20 28
1.5.1 Entretien de la sonde de pression	20
4.6. Plaque de montage ECO	20
	50
Section 5 Généralités	31
5.1 Garantie	31

5.2 Service après-vente et assistance	. 31
5.3 Mise au rebut des équipements électriques et électroniques	. 31

Section 1 Caractéristiques techniques

Les capteurs *ECO* mesurent différents paramètres des eaux naturelles de la terre. Il existe plusieurs modèles de capteurs dotés de diverses options.

Real-time (RT) - Temps réel	Sortie numérique ou analogique. Fonctionnement continu. Aucun stockage de données.
Real-time deep (RTD) - Temps réel en profondeur	Profondeur 6 000 m. Aucun stockage de données.
Standard	Sortie numérique ou analogique. Mode à faible consommation électrique. Stockage des données.
Bio-wiper (S) - Nettoyeur d'optiques	Standard et avec nettoyeur d'optiques pour empêcher le biofouling.
Battery (B) - Pile	Standard et avec piles internes.
Bio-wiper and battery (SB) - Nettoyeur d'optiques et pile	Standard avec nettoyeur d'optiques et piles internes.

Remarque : Le capteur à trois paramètres est disponible uniquement dans les modèles Standard et Battery et ne possède pas de sortie analogique.

1.1 Mechanical

	RT, standard	RTD	S	B, SB	
Diameter	6,30 cm				
Length	12,70 cm	17,68 cm	13,3 cm	28 cm	
Depth rating	600 m	6 000 m	300 m		
Temperature range	0–30 °C				
Weight in air, water	0,40 kg, 0,02 kg	1,3 kg, 0,75 kg	0,50 kg, 0,08 kg	0,96 kg, 0,14 kg	

1.1.1 Connecteur à 6 contacts

Contacts	Fonction	MCBH-6-MP
1	Masse	,1
2	RX	6 /2
3	Réservé	X6Z8
4	Entrée tension	
5	ТХ	5 3
6	Analogique 1	4/

Remarque : Le contact 3 sur les capteurs à deux paramètres est une deuxième sortie analogique.

1.1.2 Connecteur à 3 contacts

Connecteur passe-cloison supplémentaire sur les capteurs dotés de piles internes. Utilisez le connecteur d'alimentation à trois contacts à bout bleu fourni avec le capteur pour alimenter le capteur en électricité.

Contacts	Fonction	MCBH-3-FS
1	Entrée tension	GUIDE
2	Aucune connexion	SOCKET
3	Sortie pile	

1.2 Caractéristiques électriques

Entrée	7–15 V CC
Intensité du courant, typique	50 mA ; 60 mA (triplet)
Intensité du courant, veille	140 μΑ
Intensité du courant, nettoyeur activé	140 mA
Linéarité	99 %

1.3 Communications

	Fluorimètre	NTU	Diffusion	FLNTU	Triplet
Fréquence d'échantillonnage	jusqu'à 8 Hz				jusqu'à 4 Hz
Stockage des données	108 000 échantille	ons		90 000 échantill ons	77 000 échantill ons
Débit de sortie RS232	19 200 bauds				
Résolution des données	14 bits		12 bits		
Sortie numérique maximale	16 380 comptage	s	4 130 ±30 compt	ages	
Sortie analogique maximale	5 V				non-analogique

1.4 Caractéristiques optiques

1.4.1 Fluorimètre à un paramètre

Paramètre	Longueur d'onde EX/EM	Plage, sensibilité
Chlorophylle (Chl)	470/695 nm	0–125, 0,016 μg/l
Coloration des matières organiques dissoutes dans l'eau (CDOM)	370/460 nm	0–500, 0,093 ppb
Uranine (UR)	470/530 nm	0–400, 0,05 ppb
Phycocyanine (PC)	630/680 nm	0–230, 0,029 ppb
Phycoérythrine (PE)	540/570 nm	0–230, 0,029 ppb

1.4.2 Capteur à diffusion à un paramètre

Paramètre	Longueur d'onde	Plage, sensibilité
Diffusion	470 nm, 532 nm, 650 nm	0–5, 0,003 m ⁻¹
	700 nm	0–3, 0,002 m ⁻¹
		0–5, 0,003 m ⁻¹

1.4.3 Capteur fluorimètre de turbidité à deux paramètres

Paramètre	Longueur d'onde EX/EM	Plage, sensibilité (chl)	Paramètre	Longueur d'onde	Plage, sensibilité (NTU)
Chlorophylle	470/695 nm	0–30, 0,015 μg/l	NTU	700 nm	0–10, 0,005 NTU
		0–50, 0,025 µg/l			0–25, 0,013 NTU
		0–75, 0,037 µg/l			0–200, 0,098 NTU
		0–125, 0,062 µg/l			0–350, 0,172 NTU
		0–250, 0,123 µg/l			0–1 000, 0,123 NTU

1.4.4 Fluorimètre à trois paramètres et diffusion

Paramètre	Longueur d'onde EX/EM	Plage, sensibilité
Chlorophylle (Chl)	470/695 nm	0–30, 0,015 µg/l
		0–50, 0,025 µg/l
Coloration des matières organiques dissoutes dans l'eau (CDOM)	370/460 nm	0–375, 0,184 ppb
Uranine (UR)	470/530 nm	0–300, 0,073 ppb
Phycocyanine (PC)	630/680 nm	0–175 ; 0,086 ppb
Phycoérythrine (PE)	540/570 nm	0–175 ; 0,086 ppb

Paramètre	Longueur d'onde	Plage, sensibilité
Diffusion	412 nm, 470 nm, 532 nm, 650 nm, 880 nm	0–5, 0,003 m ⁻¹
	700 nm	0–3, 0,002 m ⁻¹
		0–5, 0,003 m ⁻¹

2.1 Vérification du fonctionnement du capteur

AVERTISSEMENT

Les capteurs CDOM utilisent une lampe LED ultraviolette. Ne regardez jamais directement une lampe LED UV lorsqu'elle est allumée. Cela peut endommager vos yeux. Gardez tout produit doté d'une lampe LED UV hors de la portée des enfants, des animaux domestiques et des autres organismes vivants. Protégez vos yeux à l'aide de lunettes de sécurité en polycarbonate à filtre UV lorsque vous allumez une lampe LED UV.

La tension d'alimentation du capteur ne doit pas dépasser 15 V CC. Une tension supérieure à 15 V CC endommage le capteur.

Vérifiez si le capteur fonctionne correctement, avant de procéder à la configuration et au déploiement.

- 1. Reliez le connecteur à 6 contacts du câble de test en option (reportez-vous à la section sur le câble de test pour plus de détails) au capteur.
- 2. Retirez le cache de protection des optiques du capteur.
- 3. Connectez un adaptateur série vers USB sur le câble de test pour connecter ce dernier au PC hôte.
- 4. Branchez le capteur à une source d'alimentation.
 - Connectez les capteurs munis de piles internes au connecteur à trois contacts à bout bleu fourni par le fabricant. Le capteur s'allume.
 - **b.** Connectez les capteurs sans piles internes sur le câble de test en option et une source d'alimentation régulée sur 12 V c.c.
- 5. Démarrez le logiciel hôte à partir du CD fourni par le fabricant.
 - a. Sélectionnez le port COM sur le PC hôte.
 - b. Sélectionnez le fichier de périphérique du capteur sur le CD.
 - **c.** Sélectionnez le débit en bauds si nécessaire. La valeur par défaut est de 19 200 bauds.

ECO View: v1.20) 2009-Mar-11 ECO:	
File		
Host: MM/DD/YYHH: ECO: MM/DD/YYHH: Sample Rate:	MM:SS Recording: OFF MM:SS Raw File: Raw File Size: 0 K Device File: Erem Unde File:	Select COM Port
	Engr Units File. Engr Units File Size: 0 K	Select Device File
Ston Data	Meter Setup Raw Data Plot Data Transfer Data	

- **6.** Allumez l'alimentation électrique. Le capteur s'allume.
- 7. Cliquez sur Start Data (Démarrer les données) sur le logiciel hôte.
- 8. Sélectionnez l'onglet *Raw Data* (Données brutes) du logiciel hôte. Les données collectées par le capteur s'affichent dans la colonne « Signal ».

Figure 1	Format des	données	collectées	par la	plupart	des ca	pteurs E0	CO
i iguio i	i onnat aoo	401110000	0011001000	paria	piapait	400 04		

Meter	Setu	p Ra	w Data	Plot D	ata T	ransfer	Data			
06/ 06/ 06/ 06/ 06/ 06/ 06/	14/1 14/1 14/1 14/1 14/1 14/1 14/1 14/1	2 06:06 2 06:06 2 06:06 2 06:06 2 06:06 2 06:06 2 06:06 2 06:06	(05 53 (06 53 (07 53 (09 53 (10 53 (11 53 (11 53 (12 53 (14 53	12 2 12 3 12 1	267 315 437 509 2577 4122 4122 4122 4122	660 660 660 660 660 660 660 660	3070 3406 3861 4122 4122 4122 4122 4122 4122 4122	695 695 695 695 695 695 695 695 695	78 89 127 175 629 957 970 868 868	535 535 535 535 535 535 535 535 535 535
Da	ite	Time	Wav leng	e- Sig th	gnal	Wave- length	Signal	Wave- length	Signal	Thermisto

Notez que les capteurs RT et Puck affichent des 9 à la place de la date et de l'heure.

Figure 2 Format des données collectées par les capteurs en temps réel

	Wave- length	Signal	Wave- length	Signal	Wave- length	Signal	Thermistor
99:99:99	695	49	700	259	460	58	538
99:99:99	695	44	700	262	460	53	538
99:99:99	695	39	700	258	460	50	538
99:99:99	695	37	700	255	460	62	538
99:99:99	695	41	700	257	460	64	538
99:99:99	695	43	700	260	460	55	538
99:99:99	695	42	700	264	460	51	538
	99:99:99 99:99:99 99:99:99 99:99:99 99:99:	99:99:99 695 99:99:99 695 99:99:99 695 99:99:99 695 99:99:99 695 99:99:99 695 99:99:99 695 99:99:99 695 Wave- length	99:99:99 695 42 99:99:99 695 43 99:99:99 695 41 99:99:99 695 37 99:99:99 695 39 99:99:99 695 44 99:99:99 695 49 Wave- Signal length	99:99:99 695 42 700 99:99:99 695 43 700 99:99:99 695 41 700 99:99:99 695 37 700 99:99:99 695 39 700 99:99:99 695 44 700 99:99:99 695 49 700 Wave- Signal Wave- length length	99:99:99 695 42 700 264 99:99:99 695 43 700 260 99:99:99 695 41 700 257 99:99:99 695 37 700 255 99:99:99 695 39 700 258 99:99:99 695 44 700 262 99:99:99 695 44 700 262 99:99:99 695 49 700 259 Wave Signal Wave Signal length length	99:99:99 695 42 700 264 460 99:99:99 695 43 700 260 460 99:99:99 695 41 700 257 460 99:99:99 695 37 700 255 460 99:99:99 695 39 700 258 460 99:99:99 695 44 700 262 460 99:99:99 695 49 700 259 460 Wave- Signal Wave- length length length	99:99:99 695 42 700 264 460 51 99:99:99 695 43 700 260 460 55 99:99:99 695 41 700 257 460 64 99:99:99 695 37 700 255 460 62 99:99:99 695 39 700 258 460 50 99:99:99 695 44 700 262 460 53 99:99:99 695 49 700 259 460 58 Wave- Signal Wave- Signal Wave- Signal length length length

9. Consultez la valeur maximale des données pour le capteur. Placez un doigt, le cache de protection ou un bâton fluorescent dans le cas d'un fluorimètre, à une distance de 1 à 4 cm des optiques du capteur.

La valeur des données dans la colonne « Signal » de l'onglet *Raw Data* (Données brutes) tend vers la valeur de données maximale spécifiée pour le capteur.

- Capteurs à diffusion et de turbidité : utilisez un doigt ou le cache de protection.
- Capteurs CDOM à : utilisez le bâton fluorescent bleu.
- Capteurs chlorophylles ou phycoérythrines : utilisez le bâton fluorescent orange.
- Capteurs uranine ou phycocyanine : utilisez le bâton fluorescent jaune.
- Capteurs PAR : pointez le capteur vers la lumière.
- 10. Cliquez sur Stop Data (Arrêter les données).

Le nettoyeur d'optiques se met en position fermée sur les capteurs ainsi équipés. Si vous éteignez l'alimentation avant la fin du cycle, le nettoyeur d'optiques reprend au début du cycle lorsque vous rétablissez la source d'alimentation.

2.1.1 Vérification de la sortie de données analogiques

- Branchez le câble de test fourni en option au capteur. Reportez-vous à la section relative au Câble de test à la page 23 pour obtenir plus d'informations sur les câbles de test.
- Utilisez une alimentation stabilisée pour fournir une tension de 12 V CC au capteur ou connectez une pile de 9 V aux connecteurs sur le câble de test. Le capteur s'allume.
- **3.** A l'aide des sondes d'un multimètre numérique (DMM), touchez le connecteur RCA situé sur la (ou les) branche(s) auxiliaire(s) du câble de test.
- **4.** Placez la sonde rouge (signal) dans le connecteur RCA et la sonde noire (masse) à l'extérieur.

Le multimètre numérique indique une valeur proche de 0 V CC.

 Placez le bâton fluorescent (pour les fluorimètres) ou un objet opaque à proximité de la source lumineuse du capteur.

Le multimètre numérique indique une valeur proche de 5 V CC.

2.2 Préparation du capteur en vue du déploiement

- 1. Consultez la section précédente pour vous assurer que le capteur fonctionne correctement.
- 2. Remplacez le câble de test par un câble marin pour le déploiement.
- 3. Retirez le cache de protection du capteur, le cas échéant.
- 4. Utilisez soit le connecteur d'alimentation à bout bleu (uniquement pour les capteurs munis de piles internes), soit une alimentation électrique externe pour alimenter le capteur en électricité en vue du déploiement. Si le connecteur d'alimentation et un câble sont fournis, l'équipement qui fournit la tension la plus élevée doit être utilisé.
 - Reliez le connecteur d'alimentation à bout bleu au connecteur à trois contacts. Le capteur commence à fonctionner conformément à la configuration de l'utilisateur. Le fabricant recommande ce mode pour les applications avec une bouée.
 - **b.** Reliez un câble marin au connecteur à six contacts et mettez le capteur sous tension (capteurs sans piles internes).
- Reportez-vous à la section Autres opérations à la page 10 pour plus de détails sur la configuration du capteur pour une application spécifique.

2.3 Contrôle des données

Vous pouvez contrôler les données en provenance du capteur en comptages. Le nombre de colonnes de « signal » dépend du type de capteur : à un, deux ou trois paramètres.

- 1. Assurez-vous que le capteur est alimenté en électricité et sous tension.
- 2. Cliquez sur Start Data (Démarrer les données).
- Accédez à l'onglet Raw Data (Données brutes). Voir l'illustration Vérification du fonctionnement du capteur à la page 7 pour afficher le format des données collectées.

Remarque : Les capteurs de type RT et Puck affichent généralement des 9 pour remplir les colonnes de la date et de l'heure.

2.3.1 Contrôle des données

- 1. Accédez à l'onglet Plot Data (Traçage de données).
- 2. Sélectionnez l'option « Engr Units » (Unités scientifiques) dans le menu déroulant situé dans la partie supérieure de l'onglet.

3. Sélectionnez le type d'unité à afficher.

Le logiciel hôte effectue alors la conversion et affiche les données en unités scientifiques sous l'onglet *Plot Data*.

Remarque : Les données sont enregistrées en comptages et non en unités scientifiques.

2.4 Obtention des données du capteur

- Saisissez un nom de fichier dans la fenêtre Retrieve Meter's Internal Data (Extraire les données internes du capteur).
- 6. Cliquez sur Save (Enregistrer). Le logiciel hôte enregistre alors les données internes du capteur sur le PC hôte.
- 7. Vérifiez si le déplacement des données est terminé.

Receive File Status: Complete
Receive File: C:\ECOData\SavedRun1.raw
Receive File Size: 8 K

 Ouvrez le fichier de données pour vous assurer que les données sont bien sur le PC hôte.

Contactez le fabricant pour obtenir un modèle de feuille de calcul pour un capteur *ECO*.

9. Pour effacer les données de la mémoire du capteur, cliquez sur **Erase Memory** (Effacer la mémoire).

2.5 Autres opérations

Remarque : Les capteurs en temps réel (RT et RTD) ne stockent aucune donnée. Certaines des options de collecte des données de cette section ne s'appliquent pas à ces modèles de capteur.

2.5.1 Définition de la date et de l'heure

Assurez-vous que le capteur est relié à une source d'alimentation et qu'il est allumé. Assurez-vous également que le logiciel hôte est ouvert.

- 1. Si le capteur est en fonctionnement, cliquez sur **Stop Data** (Arrêter les données) pour arrêter le capteur.
- 2. Cliquez sur Set Date and Time (Régler la date et l'heure) dans le logiciel hôte. Le logiciel hôte modifie alors l'heure du capteur en fonction de celle du PC hôte.

Get Date/Time/Setup
Set Date and Time

3. Cliquez sur **Get Date/Time/Setup** (Obtenir la date/l'heure/la configuration) pour vérifier si le capteur et le PC hôte indiquent bien la même heure.

🚯 ECO View: v1.20 20
File
Host: 04/09/12 09:34:59 ECO: 04/09/12 09:34:59

2.5.2 Réglage des options pour la collecte des données

A la sortie de l'usine, les capteurs *ECO* fonctionnent à environ 1 Hz et la mémoire interne facultative de stockage de données est activée.

Option ECOView	Mode de fonctionnement
Set Avg/Data Rate (Définir le débit de données/moyen)	Spécifiez une valeur comprise entre 1 et 65 535. Exemples:
	Capteurs à 1 paramètre : environ 1 Hz = 65 ; environ 2 Hz = 30
	Capteurs à 2 paramètres : environ 1 Hz = 30 ; environ 2 Hz = 15
	Capteurs à 3 paramètres : environ 1 Hz = 18 ; environ 2 Hz = 6
	Capteurs PAR : environ 1 Hz = 310 ; environ 2 Hz = 170
Set Number of Samples (Définir le nombre d'échantillons)	Spécifiez une valeur comprise entre 0 et 65 535. Sélectionnez 0 pour un fonctionnement continu.
Les trois options ci-desso	us s'appliquent uniquement aux capteurs disposant d'une mémoire interne.
Set Number of Cycles (Définir le nombre de cycles)	Spécifiez une valeur comprise entre 0 et 65 535. Sélectionnez le nombre de groupes d'échantillons que le capteur doit collecter entre deux périodes de faible consommation électrique.
Set Cycle Interval (Définir l'intervalle entre les cycles)	Spécifiez la durée de l'intervalle entre les cycles d'échantillonnage. Omettez les signes deux-points. La valeur minimale est 5 secondes.
Turn Logging ON (Activer l'enregistrement)	Cliquez pour activer ou désactiver le stockage des données (capteurs avec stockage interne des données uniquement).

Tableau 1 Options de collecte des données

Spécifiez l'une des options de collecte des données dans l'onglet *Meter Setup* (Configuration du capteur).

Utilisation et maintenance

 Settings (Paramètres RAM actuels).

 Dans l'exemple ci-dessus, le capteur à 3 paramètres fonctionne à une « moyenne » de 18 et un « débit de données » de 1,12 Hz. Le capteur collecte les données à raison de 10 lignes de données pour 3 cycles, avec un intervalle de faible consommation de 15 secondes après chaque cycle. Le capteur s'arrête après la dixième ligne du troisième cycle de collecte des données.

Tableau 2	Exemples	de collectes	de données
-----------	----------	--------------	------------

Collecte de données avec une bouée Set Avg/Data Rate = ±1 Hz	Collecte de données de profil Set Avg/Data Rate = ±1 Hz
Set Number of Samples = 50	Set Number of Samples = 0
Set Number of Cycles = 24	Set Number of Cycles = N/A
Set Cycle Interval = 006000	Set Cycle Interval = N/A
Turn Logging ON/OFF = ON	Turn Logging ON/OFF = ON
Le capteur collecte et stocke les données une fois par seconde, 50 fois toutes les 60 minutes pendant 24 heures.	Le capteur collecte les données une fois par seconde et les stocke tant qu'il reste alimenté.

Si le capteur est configuré pour la collecte intermittente de données, comme dans le cas d'un déploiement avec une bouée, il peut se mettre en mode de consommation réduite. Il n'est pas possible de communiquer avec le capteur dans cette situation.

- 1. Pour pouvoir reprendre la communication, déconnectez l'alimentation du capteur pendant une minute.
- 2. Reconnectez l'alimentation et cliquez plusieurs fois sur **Stop Data** (Arrêter les données).
- 3. Sélectionnez l'onglet *Meter Setup* (Configuration du capteur). Voir Réglage des options pour la collecte des données à la page 11.
- 4. Saisissez 0 dans la zone de texte Number of Samples (Nombre d'échantillons).
- 5. Cliquez sur Set Number of Samples (Définir le nombre d'échantillons).
- 6. Cliquez sur Store to Flash (Enregistrer dans la mémoire Flash). Le capteur fonctionne en continu.

Vérifiez si le capteur fonctionne en continu.

- 1. Sélectionnez l'onglet Raw Data (Données brutes).
- 2. Cliquez sur Start Data (Démarrer les données).
- 3. Laissez le capteur collecter au moins 10 échantillons.
- 4. Cliquez sur Stop Data (Arrêter les données).

2.5.3 Modification des vues dans l'onglet Plot Data (Traçage de données)

L'onglet *Plot Data* du logiciel hôte permet à l'utilisateur de visualiser les données collectées par le capteur.

Bouton	Fonction	Description
1	Reprise	Cliquez pour lire ou interrompre les données qui s'affichent.
2	Pause	Arrête l'axe x.
3	Défilement des axes	Déplace l'un ou l'autre des axes vers le haut ou le bas, ou vers la gauche ou la droite.
4	Zoom des axes	Déplace l'un ou l'autre des axes vers le haut ou le bas, ou vers la gauche ou la droite.
5	Zoom arrière	Réduit de 2x le niveau de détail.
6	Zoom avant	Augmente de 2x le niveau de détail.
7	Zoom de la sélection	Effectue un zoom sur tous les axes de la zone sélectionnée.
8	Curseur	Place le curseur à un endroit précis des données.
9	Copier	Copie les données actuellement affichées dans le Presse-papiers du PC hôte.
10	Enregistrer	Enregistre une image des données affichées sur le PC hôte.
11	Imprimer	Envoie une image des données affichées à une imprimante.

Entrez le type de données à afficher avec le menu déroulant situé au-dessus de la zone d'affichage noire (μ g/L, ppb, diffusion, etc.).

2.6 Maintenance du capteur

Aucune pièce du capteur ne doit être nettoyée avec de l'acétone ou un autre solvant.

- **1.** Après chaque immersion ou exposition à l'eau naturelle, rincez le capteur à l'eau claire.
- Nettoyez à l'eau savonneuse toute trace de graisse ou d'huile sur la façade des optiques. L'emploi d'un produit nettoyant abrasif risque d'endommager la surface en plastique ABS et en résine époxy optique.
- 3. Séchez le capteur à l'aide d'un chiffon propre et doux.

2.6.1 Nettoyage et lubrification du connecteur passe-cloison

Lubrifiez régulièrement les contacts des connecteurs passe-cloison à l'aide d'un spray de silicone. Laissez sécher les contacts avant de les reconnecter.

Assurez-vous que les broches ne présentent aucune trace de corrosion (taches vertes et ternes). Vérifiez également si les joints en caoutchouc des broches sont encore intacts et totalement adhérents. Les connecteurs doivent se raccorder parfaitement, sans résistance particulière.

Le fabricant recommande le spray lubrifiant silicone 3M[™] (UPC 021200-85822). Les autres sprays au silicone sont susceptibles de contenir des solvants hydrocarburés qui endommagent le caoutchouc.

N'utilisez **PAS** de graisse silicone. N'utilisez **PAS** de lubrifiant WD-40[®]. Un lubrifiant non adapté entraînerait une défaillance du connecteur passe-cloison et du capteur.

3.1 Eléments fournis

- le capteur ECO
- un connecteur factice et un collier d'arrêt
- un connecteur d'alimentation à bout bleu et un collier d'arrêt pour les capteurs munis de piles internes
- un cache de protection en plastique pour les optiques
- un kit de pièces de rechange pour ce modèle de capteur
- une plaque de montage en acier inoxydable et visserie (les capteurs prévus pour une profondeur de 6 000 m et les capteurs dotés de piles internes sont fournis sans cette plaque de montage.)
- Sur le CD :
- le présent manuel d'utilisation
- le logiciel hôte ECOView
- · le fichier ou les fichiers de périphérique pour le capteur
- la page de caractéristiques ou d'étalonnage du capteur.

3.2 Etalonnage

Le fabricant procède à l'étalonnage de tous les capteurs à diffusion, afin de garantir la conformité des données collectées selon les caractéristiques du produit. Ces informations spécifiques au modèle de capteur sont reportées sur la page d'étalonnage fournie avec l'appareil.

3.3 Caractérisation

Le fabricant utilise un matériau fluorescent pour distinguer tous les capteurs de fluorescence, afin d'assurer que les données collectées sont conformes aux spécifications du capteur. Ces informations spécifiques au modèle de capteur sont reportées sur la page d'étalonnage fournie avec l'appareil.

3.4 Caractérisation en contexte

Le fabricant conseille à l'utilisateur d'effectuer une caractérisation en contexte des fluorimètres, afin de garantir la précision optimale des données pour l'application du client. Le facteur d'échelle et les valeurs des comptages dans l'obscurité peuvent varier en fonction de l'eau naturelle, de la température, de la longueur du câble, de l'alimentation électrique et d'autres facteurs.

Pour effectuer la caractérisation du capteur en contexte, procédez de la façon suivante :

- **x** = solution dont la concentration en volts ou en comptages est connue.
- sortie = échantillon représentatif mesuré en volts ou en comptages.
- comptages dans l'obscurité = sortie de signal mesurée en volts ou en comptages lorsque le capteur est immergé dans l'eau claire avec une bande noire sur le détecteur.
- facteur d'échelle = coefficient en μg/l/volt, ppb/l/volt, OU μg/l/comptage, ppb/l/comptage.
- 1. Préparez une solution à une concentration donnée, *x*.
- 2. Mesurez et enregistrez cette solution à l'aide du capteur. Cette valeur est la **sortie** en volts ou en comptages.
- 3. Mesurez et enregistrez les comptages dans l'obscurité du capteur.
- 4. Utilisez l'équation suivante pour déterminer le facteur d'échelle du capteur :

Facteur d'échelle = $x \div$ (sortie - comptages dans l'obscurité).

- A l'aide du facteur d'échelle, déterminez la concentration de l'échantillon représentatif :

 (comptages de sortie comptages dans l'obscurité) × facteur d'échelle = concentration de la solution.
- 6. Enregistrez le facteur d'échelle et les comptages dans l'obscurité (décalage) dans le fichier de périphérique du capteur, dans la mémoire interne du capteur ou aux deux endroits à la fois.

3.4.1 Store field characterization values in device file

The host software uses a device file to process data. Refer to the example below.

Remarque : A colon comes before the comments in the device file. The comments are not used by the host software.

ECO FLS-1822 Created on: 04/29/2011 : chl=ug/l. : iengrunits=µg/I for chl; ppb for PC, PE CDOM and uranine. : column 4=input the scale factor and offset in this column. : N/U=not used. maxvoltage=4.96 asv1=6 2606 asv2=12.5355 asv4=25.2860 COLUMNS=5 N/U=1 N/U=2N/U=3 Chl=4 0.0052 48 N/U=5

- **1.** Replace the values in column 4 of this device file with the scale factor and offset values from the field characterization.
- 2. Save this device file with a new name.
- **3.** To use this new file in the host software, select the *File* menu, then push **Load Device File**.

3.4.2 Enregistrement des valeurs de la caractérisation en contexte dans le capteur

Avant de commencer la procédure, assurez-vous que le capteur est relié à une pile de 9 V ou une alimentation électrique et au PC hôte.

- 1. Démarrez le logiciel hôte, le cas échéant.
- Cliquez sur Select COM Port (Sélectionner le port COM). Sélectionnez le port de communications du PC.
- **3.** Cliquez sur **Device File** (Fichier de périphérique). Sélectionnez le fichier de périphérique à partir de la caractérisation en contexte.
- 4. Assurez-vous que le capteur ne collecte aucune donnée.
- 5. Sélectionnez l'onglet FL Setup (Configuration FL).

-					J	
	Device	File: C:\All	documents'	Manuals\E0	O\FLS-1822IENG	iRfieldchar.dev
	Engr U	nits File:				
	Engr U	nits File Size	:: 0 K			
	Meter Setup	FL-Setup	Raw Data	Plot Data	Transfer Data	
			Ch	ande	Current	Device File
			Setti	ngs To	Ram Settings	Settings
	Set E	ngr Scale	0	.0001	:	0.0052
		-				
	Set Fr	nar Affset	1			48
		igi onioci				40
	Turn Eng	r Outsut O	EE E.	ar Outout: C	IN	
	run cny	i output u		igi oʻutput, c	, na	

- Saisissez le facteur d'échelle de la caractérisation en contexte dans la zone située dans la colonne <u>Change Settings To</u> (Changer les paramètres à). Il s'agit de la valeur qui figure dans le fichier de périphérique modifié.
- 7. Cliquez sur Set Engr Scale (Définir l'échelle scientifique).
- Saisissez le décalage de la caractérisation en contexte dans la zone située dans la colonne <u>Change Settings To</u> (Changer les paramètres à).
- 9. Cliquez sur Set Engr Offset (Définir le décalage scientifique).
- 10. Cliquez sur Store to Flash (Enregistrer dans la mémoire Flash).

Le capteur enregistre les valeurs de la caractérisation en contexte dans sa mémoire interne. Les valeurs apparaissent dans la colonne <u>Current Ram Settings</u> (Paramètres RAM actuels) dans le logiciel hôte.

3.5 Configuration spécifique du fluorimètre de la chlorophylle

Les capteurs *ECO* mesurant uniquement la chlorophylle comportent deux fichiers de périphérique. Le premier est un fichier de périphérique standard. L'autre fichier présente une colonne supplémentaire dans laquelle le logiciel hôte indique la valeur de la chlorophylle en μ g/l.

1. Modifiez la colonne 5 du fichier de périphérique IENGR pour y afficher les valeurs de la caractérisation en contexte.

```
ECO FL-784
Created on:
                     07/17/11
          chl=ug/l iengrunits = \mug/l for CHL. ppb for PC, PE, CDOM, uranine. column 5 = input scale factor and offset.
                     4.96
6.3834
maxvoltage=
asv1=
asy2=
                     12 7597
                      25.5050
asv4=
: Has internal CHL in meter output
COLUMNS=6
N/U=1
N/U=2
TENGR=3
          0.0077 81
ch_{1=5}
N/U=6
```

- 2. Enregistrez le fichier de périphérique sous un nouveau nom.
- Reportez-vous aux étapes de la section Enregistrement des valeurs de la caractérisation en contexte dans le capteur à la page 17 pour enregistrer ces valeurs également dans le capteur, et pas seulement dans le fichier de périphérique.
- 4. Sélectionnez le menu *File* (Fichier), puis « Load Device File » (Charger un fichier de périphérique) dans le logiciel hôte.
- 5. Sélectionnez le fichier de périphérique que vous venez de renommer.
- 6. Accédez à l'onglet FL-Setup (Configuration FL).
- Cliquez sur Turn Engr Output ON (Activer la sortie ENGR) pour activer l'affichage des valeurs en µg/l.

Cliquez sur **Start Data (Démarrer les données).** Une nouvelle colonne de valeurs exprimées en µg/l apparaît alors sous l'onglet *Raw Data* (Données brutes).

Meter Setup FL-Setup Raw Data Plot Data Transfe

02/06/1210:17:40	28.22	695	3693	553
02/06/1210:17:41	28.20	695	3691	553
02/06/1210:17:42	28.23	695	3694	553

3.6 Fichiers de périphérique

Le logiciel hôte fait appel à un fichier de périphérique spécifique au type de capteur, pour afficher les données sous l'onglet *Plot Data* (Traçage de données) et pour calculer la sortie de données en unités scientifiques. Chaque fichier de périphérique comporte trois éléments essentiels. Ce fichier n'est pas nécessaire pour configurer un capteur et transférer des données à partir de ce dernier à l'aide du logiciel hôte.

- 1. Le titre affiché sous l'onglet Plot Data (Traçage de données).
- 2. Le nombre de colonnes du fichier de périphérique.
- 3. La description du contenu de chaque colonne.

Titre de l'onglet *Plot Data*

La première ligne du fichier de périphérique indique le nom du modèle et le numéro de série du capteur. Cette information figure en haut de l'écran sous l'onglet *Plot Data* (Traçage de données) dans le logiciel hôte.

Nombre de colonnes

Le nombre de colonnes indique le nombre de colonnes de données qui seront traitées par le logiciel hôte. Elle se présente sous le format COLUMNS=x.

Description des colonnes

Chaque colonne de sortie des données du capteur provient d'une description enregistrée dans le fichier de périphérique.

Colonnes=x

Date=x MM/JJ/AA Heure=x HH:MM:SS

N/U=x non utilisé

sc=facteur d'échelle

off=décalage

IENGR=x

mw=longueur d'onde de mesure du capteur

dw=longueur d'onde d'affichage du capteur

Exemple de fichier de périphérique d'un fluorimètre	
chl, phycoérythrine, phycocyanine, uranine, rhodamine ou CDOM=x sc off	ECO FLS-1822 Created on: 04/29/2011
Colonne 4 = facteur d'échelle (sc) décalage (off).	: chI=ug/l. : iengrunits=µg/l for chl; ppb for PC, PE CDOM and uranine. : column 4=input the scale factor and offset in this column. : N/U=not used. maxvoltage=4.96 asv1=6.2606 asv2=12.5355 asv4=25.2860 COLUMNS=5 N/U=1 N/U=2 N/U=3 ChI=4 0.0052 48 N/U=5
Exemple de fichier de périphérique d'un fluorimètre avec v	aleurs en μg/l
chl, phycoérythrine, phycocyanine, uranine, rhodamine ou CDOM=x sc off Colonne 5 = facteur d'échelle (sc) décalage (off).	ECO FL-784 Created on: 07/17/12 : has internal CHL in output : lengr units = µg/l for CHL. ppb for PC, PE, CDOM, uranine. : column 5 = input the scale factor and offset values. maxvoltage=4.96 asv1 = 6.3834 asv2 = 12.7597 asv4 = 25.5050 COLUMNS=6 N/U=1 N/U=2 IENGR=3 N/U=4 ChI=5 0.0052 48 N/U=6
Exemple de fichier de périphérique d'un capteur à diffusion	n
lambda (longueur d'onde de diffusion) = x sc off mw dw Colonne 4 = facteur d'échelle (sc), décalage (off), longueur d'onde de mesure (mw) et longueur d'onde d'affichage (dw).	ECO BBS-974g Created on: 08/28/12 Columns=5 Date=1 Time=2 N/U=3 Lambda=4 7.916E-06 51 532 532 N/U=5

Exemple de fichier de périphérique d'un capteur de turbidité							
NTU=x sc off Colonne 4 = facteur d'échelle (sc) et décalage (off).	ECO NTUSB-503 Created on: 09/07/2012						
	COLUMNS=5 N/U=1 N/U=2 N/U=3 NTU=4 0.0153 50 N/U=5						

3.7 Utilisation du programme de terminal

Si vous ne désirez pas utiliser le logiciel hôte, vous pouvez également faire appel à Windows HyperTerminal[®] ou à un autre programme de terminal pour utiliser les capteurs.

Paramètres d'interface									
Débit en bauds : 19 200	Bits d'arrêt : 1	Bits de données : 8	Contrôle de flux : aucun	Parité : aucune					

3.7.1 Opérations courantes du programme terminal

Commande	Paramètres	Description
11111	aucun	Interrompt la collecte des données par le capteur. Permet à l'utilisateur de saisir les valeurs définies. (Si le capteur est en mode de consommation réduite, éteignez l'alimentation pendant une minute, puis rallumez-la et appuyez sur la touche « ! » au moins 5 fois.
\$ave	1–65535	Définit le nombre de mesures composant chaque ligne de données collectées.
\$mnu	—	Affiche le menu des valeurs définies à l'écran du PC hôte.
\$pkt	0–65 535	Précise le nombre de lignes de données collectées entre les périodes sélectionnées.
\$run	—	Génère le fonctionnement avec les valeurs définies actuellement.
\$sto	_	Enregistre les valeurs définies souhaitées sur la mémoire flash du capteur.

Capteurs à un	Capteurs à un paramètre—Fluorimètres et NTU uniquement								
\$asv	1 2 4	Définit la valeur d'échelle analogique du capteur. 1 = les données analogiques collectées couvrent le quart inférieur de la plage de données du capteur.							
		2 = les données analogiques collectées couvrent la moitié de la plage de données du capteur.							
	4 = les données analogiques collectées couvrent l'intégralité de la plage de données du capteur.								

Fluorimètres	-luorimètres uniquement									
\$cal	1= ACTIVER 0 = DESACTIVE R	Active l'affichage de la colonne de données en unités scientifiques, exprimées en µg/l. Désactive l'affichage de la colonne de données en unités scientifiques, exprimées en µg/l.								
\$ugl	0–255	Définit le facteur d'échelle pour les données collectées affichées en µg/L.								
\$off 0–255 Définit le décalage pour les données collectées affichées en in μg/L.										

3.7.2 Utilisation du programme de terminal pour les capteurs avec mémoire interne

Commande Paramètres		Description						
\$clk	heure au format 24 heures	Règle l'heure dans la mémoire interne au format hhmmss.						
\$date Règle la date dans la mémoire interne au format mmjjaa.		Règle la date dans la mémoire interne au format mmjjaa.						
\$emc	—	Vide la mémoire interne.						
\$get	—	Lit les données stockées dans la mémoire interne. Renvoie etx à la fin de l'opération.						
\$int	heure au format 24 heures	Définit la durée de l'intervalle entre les séries de mesures au format hhmmss.						
\$mvs	1 = MARCHE ; 0 = ARRET	1 = le nettoyeur d'optiques est en position ouverte. 0 = le nettoyeur d'optiques est en position fermée.						
\$rec	1= ACTIVER 0 = DESACTIVER	 1 = Active la mémoire interne du capteur. 0 = Désactive la mémoire interne du capteur. 						
\$rls	—	Charge les paramètres à partir de la mémoire Flash.						
\$set	0–65 535	Définit le nombre de lignes de données générées entre les périodes de faible consommation.						

3.7.3 Différences entre ECOView et le programme de terminal

ECOView utilise des mots différents, mais équivalents pour les options de collecte de données.

Section 4 Equipement en option

4.1 Câble de test

Le câble de test permet de configurer et tester le capteur avant son déploiement.

Un connecteur de sortie analogique

Deux connecteurs de sortie analogique

Sans sortie analogique

1 Connecteur à six contacts	3 Connecteur de port série DB-9
2 Connecteur pour pile de 9 volts	4 Connecteur RCA(s)

- 1. Reliez le connecteur à six contacts au capteur.
- 2. Reliez le connecteur de 9 volts à une pile de 9 volts. Il peut également être relié à une source d'alimentation stabilisée.
- Reliez le connecteur DB-9 au PC hôte. Au besoin, utilisez un câble adaptateur USB-RS232.
- 4. A l'aide d'un multimètre numérique (DMM), mesurez la sortie analogique (le cas échéant) du capteur. L'intérieur du connecteur RCA correspond au signal (sonde rouge du DMM) et l'extérieur à la masse (sonde noire du DMM).

4.2 Piles internes

AVERTISSEMENT

Le remplacement des piles exige l'ouverture du boîtier étanche du capteur *ECO*. Cette opération doit être effectuée de manière correcte, afin d'éviter tout risque de blessure ou de mort dû à une pression anormale résultant de l'entrée d'eau. Il est parfois impossible de réparer des capteurs ayant pris l'eau.

Le fabricant décline toute responsabilité en ce qui concerne l'utilisation ou la réparation de ces capteurs. Ne pouvant pas contrôler l'utilisation de ces capteurs, ni choisir le personnel qualifié pour leur mise en œuvre, le fabricant n'accepte de prendre aucune mesure pour se conformer aux lois sur la responsabilité du fait des produits défectueux, y compris les lois imposant au fabricant d'avertir l'utilisateur des éventuels dangers liés à l'utilisation et à la maintenance des capteurs. L'acceptation de cet équipement de la part du client implique la renonciation à toute action en justice contre le fabricant en relation avec l'utilisation et la réparation de ces capteurs. La réparation des capteurs ayant pris l'eau reste à la discrétion du fabricant.

AVERTISSEMENT

Le capteur peut être sous pression. Orientez-le loin du corps lorsque vous retirez l'évent ou la bride externe.

AVERTISSEMENT

Remplacez les piles dans un environnement propre et sec. Les gaz présents à l'intérieur du capteur peuvent se dilater et ouvrir la soupape de pression. Cela a pour effet de faire entrer l'eau dans le capteur. Ne remplacez pas les piles dans un environnement froid avant de déployer le capteur dans un milieu chaud.

Les capteurs ayant pris l'eau sont généralement irréparables. Dans certains cas, le fabricant a la possibilité de récupérer les données stockées dans le capteur. Pour plus

d'informations concernant les capteurs ayant pris l'eau, contactez le fabricant à l'adresse service@wetlabs.com.

Les capteurs alimentés par piles sont dotés de six piles au lithium de 9 volts. Ils fonctionnent également avec des piles alcalines ou au lithium-manganèse (LiMnO₂). Les piles alcalines garantissent une alimentation d'environ 1 000 mA-heure. En revanche, les piles LiMnO₂ fournissent plus de 2 000 mA-heure.

Remarque : La température nominale de l'eau, la durée des séquences, les périodes d'échantillonnage et d'autres variables ont une incidence sur la durée de vie des piles internes du capteur.

4.2.1 Retrait des piles

- 1. Nettoyez la bride externe de tout débris ou saleté.
- 2. Séchez le capteur avec soin.
- 3. Retirez les éventuels capuchons, si nécessaire.
- 4. Orientez la bride externe du capteur vers le bas, loin du visage.
 - a. Dégagez l'évent.
 - b. Si le capteur est équipé d'une thermistance externe, dégagez-la également.
- 5. Séchez l'évent (et la thermistance, le cas échéant).
- 6. A l'aide d'une pince à long bec, retirez le fil de la bride externe.

Figure 3 Retrait du fil de la bride externe

- Séparez la bride externe du boîtier étanche. Vous pouvez éventuellement vous aider des vérins à vis fournis avec les pièces de rechange pour dégager la bride externe du boîtier avant de la retirer.
- 8. Déconnectez avec précaution chacun des connecteurs Molex[®].
- 9. Retirez la vis de fixation de l'évent sur la bride externe.
- 10. Séchez les zones de contact de la bride externe et du boîtier étanche.
- **11.** Examinez les joints toriques de l'évent et de la thermistance (le cas échéant). Retirez tout joint torique endommagé.
- **12.** Appliquez une fine couche de graisse à vide sur un joint torique neuf et mettez-le en place sur l'évent ou la thermistance.
- 13. Remettez l'évent en place sur la partie supérieure de la bride externe.
- 14. Le cas échéant, insérez de nouveau la thermistance dans la bride externe.
- **15.** Insérez la vis de l'évent sur la face interne de la bride. Cette vis sert à fixer l'évent sur la bride externe.
- **16.** Tirez délicatement sur la boucle en plastique blanc pour extraire les piles et leur support du boîtier étanche.
- **17.** Retirez les embouts de protection en plastique noir de l'extrémité des longues vis de fixation des piles.
- **18.** A l'aide d'un tournevis plat de 1/4", desserrez légèrement les vis **sans les retirer**.

Il est déconseillé de retirer complètement ces deux vis. Si vous les retirez, toutes les pièces seront démontées dans le désordre et il vous sera difficile de les remettre en place.

Figure 4 Résultat du retrait des deux vis de fixation

19. Déconnectez les six piles.

4.2.2 Remplacement des piles

Mettez en place des piles neuves dans le capteur.

1. Inclinez légèrement le support afin de connecter la première pile aux contacts placés perpendiculairement par rapport aux deux autres groupes.

Figure 5 Connexion de la première pile

- 2. Inclinez le support dans la direction opposée pour connecter les deux autres lots de piles.
- 3. Connectez les autres piles.
- 4. Maintenez les plaques de montage supérieure et inférieure et resserrez les vis. La partie inférieure des piles peut parfois déborder. Assurez-vous que les piles ne dépassent pas des circuits imprimés. Si c'est le cas, le support et les piles risquent de rayer le revêtement de surface lorsque vous les replacez à l'intérieur du boîtier étanche.
- 5. Installez le disque de néoprène sur la partie inférieure et remettez les embouts de protection en plastique noir sur l'extrémité des vis.
- 6. Retirez et examinez le joint torique 224 du boîtier étanche pour vérifier son état.
- 7. Utilisez un joint torique neuf, si nécessaire.
- **8.** Appliquez une fine couche de graisse à vide (par exemple, Dow Corning[®] High Vacuum Grease) sur le joint torique.

- 9. Placez le support avec les piles à l'intérieur du boîtier étanche.
- **10.** Branchez les connecteurs Molex[®].
 - Notez que la goupille peut se trouver sous la bride externe ou dans le boîtier étanche.

Figure 6 Face interne de la bride

1 orifice de la goupille		2 trous	pass	sants	pour \	vérins à	vis	3	vis de	fixatio	on de l'évent
							<i>.</i>				

- 11. Placez la bride sur le boîtier étanche en évitant de coincer les câbles.
- **12.** Placez la goupille en face de son orifice. Ne l'insérez pas dans l'un des trous passants prévus pour les vérins à vis, qui traversent la bride de part en part.
- **13.** Assurez-vous qu'aucun câble n'est coincé entre la bride externe et le boîtier étanche.
- **14.** Poussez la bride jusqu'à ce qu'elle soit tout contre le bord du boîtier étanche.
- 15. Installez le fil dans la bride externe.
- 16.
- 17.
- 18.
- 19.

4.3 Nettoyeur d'optiques et façade en cuivre

Le nettoyeur d'optiques et la façade en cuivre permettent de réduire le biofouling pendant les déploiements de longue durée. Le nettoyeur d'optiques peut être commandé manuellement à l'aide d'un contrôleur hôte. Il peut également fonctionner de manière autonome s'il est programmé avant le déploiement. La température et la profondeur du milieu dans lequel le capteur est installé ont une incidence sur la durée du cycle du nettoyeur d'optiques.

4.3.1 Entretien du nettoyeur d'optiques et de la façade

Les capteurs dotés de façades et de nettoyeurs d'optiques en cuivre doivent être nettoyés régulièrement pour conserver les propriétés anti-fouling du cuivre. Retirez le nettoyeur d'optiques et la façade du capteur pour les nettoyer.

AVIS

Ne faites pas pivoter manuellement le nettoyeur d'optiques ou son axe. Cliquez sur **Open Shutter** (Ouvrir le volet) et **Close Shutter** (Fermer le volet) dans le logiciel hôte pour effectuer cette opération. En forçant manuellement la rotation, vous risquez d'endommager le moteur du nettoyeur d'optiques.

- 1. Déconnectez le capteur de toute source d'alimentation électrique.
- A l'aide de la clé hexagonale de 3/32" fournie par le fabricant, desserrez la vis qui maintient le nettoyeur d'optiques sur le capteur. Si nécessaire, insérez le vérin à vis fourni par le fabricant dans l'orifice d'expansion pour dégager le nettoyeur d'optiques. Les capteurs PAR ne présentent pas d'orifice d'expansion et ne sont pas fournis avec un vérin à vis.

Figure 7 Emplacement des vis sur le nettoyeur d'optiques

1 vis insérée dans l'orifice de serrage

2 orifice d'expansion

- 3. Soulevez le nettoyeur d'optiques et détachez-le de la façade.
- 4. Le cas échéant, retirez le vérin à vis.
- A l'aide d'un petit tournevis cruciforme, retirez les vis servant à fixer la façade sur les optiques du capteur.
- 6. Conservez les vis.
- 7. Lavez le nettoyeur d'optiques et la façade à l'eau savonneuse.
- 8. Rincez et séchez avec soin.
- **9.** A l'aide d'un tampon abrasif (par exemple, Scotch-Brite[®]), frottez le nettoyeur d'optiques et la façade jusqu'à ce qu'ils brillent.
- Nettoyez l'axe du nettoyeur d'optiques et l'orifice de l'axe, à l'aide d'un coton imbibé d'alcool isopropylique.
- **11.** Assurez-vous que le nettoyeur d'optiques et la façade sont parfaitement secs.
- **12.** Remettez la façade en place.
- **13.** Vérifiez si la vis de fixation du nettoyeur d'optiques est en bon état. La clé hexagonale de 3/32" doit être adaptée à la tête de la vis.
- 14. Si la vis est endommagée, remplacez-la par l'une des vis du kit de pièces de rechange fourni avec le capteur. Ces vis en acier inoxydable 316 de 4-40 x 3/8" sont traitées avec un antigrippant.
- **15.** Insérez le vérin à vis dans l'orifice d'expansion du nettoyeur d'optiques. Tournez-le lentement jusqu'à ce que le nettoyeur d'optiques se positionne facilement sur son axe.
- 16. Placez le nettoyeur d'optiques sur l'axe sans le faire pivoter.
- 17. Veillez à retirer le vérin à vis avant de serrer la vis de 3/32".
- Servez-vous des commandes du logiciel hôte pour placer le nettoyeur d'optiques sur la position fermée, de façon à ce qu'il couvre les optiques.

19. Réglez l'écart entre le nettoyeur d'optiques et la façade à environ 0,6 mm. *Remarque :* Si le nettoyeur d'optiques présente une courbure exagérée parce qu'il est trop proche de la façade, le moteur consommera trop d'électricité. En revanche, si l'écart entre le nettoyeur d'optiques et la façade est insuffisant, les optiques ne seront pas propres.

Figure 8 Ecart du nettoyeur d'optiques

1 Ecart entre le nettoyeur d'optiques et la façade

2 Courbure du nettoyeur d'optiques

- **20.** A l'aide de la clé hexagonale de 3/32", resserrez la vis sans exagérer.
- 21. Allumez le capteur pour vérifier si le nettoyeur d'optiques pivote correctement. Le nettoyeur d'optiques doit décrire un arc de 180 degrés et découvrir les optiques avant leur activation. Il pivotera ensuite de 180 degrés pour couvrir les optiques après leur activation.

4.4 Thermistance externe

La valeur du coefficient d'étalonnage de la thermistance est indiquée sur la page de caractérisation du capteur livrée avec l'appareil. La thermistance fournit des relevés de température en comptages. Pour convertir les comptages en unités scientifiques, choisissez l'une des méthodes suivantes.

1. Utilisez le menu déroulant du logiciel hôte pour sélectionner l'affichage des sorties de la thermistance en °C.

Meter Setup FL-Setup Ra	aw Data Plot Data T	ransfer Data			
Engr Units 🔹					
· _				Plot	External Temp 💌
) II + & Q	🔍 🗆 H 🖻	Pa 🖬 🖨			
	EC	O FLCD	SB-332		
20.0					
20.0					CDUM: 13 ppb xTemp: 21.1 C

2. Faites appel à MATLAB, MS Excel ou tout autre logiciel pour résoudre l'équation suivante :

Température, °C = (Sortie × Pente) + Intersection

4.5 Sonde de pression

La valeur du coefficient d'étalonnage de la sonde de pression est indiquée sur la page d'étalonnage du capteur livrée avec l'appareil. La sonde fournit des relevés de pression en comptages. Pour convertir les comptages en unités scientifiques, choisissez l'une des méthodes suivantes.

1. Utilisez le menu déroulant du logiciel hôte pour sélectionner l'affichage des sorties de la sonde de pression en dbar.

Plot Data Transfer Data			
	Plot Pressure	•	
			Plot External Temp
ECO FL3B-2681			
			🗕 CHL: 2448 Counts
			 peryth: 384 Counts counts
			 pcyan: 2029 Counts xTemp: 8848 Counts
			Pres: 47 Counts

- **2.** Faites appel à MATLAB, MS Excel ou tout autre logiciel pour résoudre l'équation suivante :
 - pression relative, dbar = (sortie × pente) + intersection
- Calculez la pression absolue : pression absolue, dbar = pression relative, dbar - pression relative à l'interface aireau, dbar

Les sondes de pression doivent être remises à zéro à chaque déploiement. N'immergez pas la sonde de pression à une profondeur supérieure à celle spécifiée sur la page d'étalonnage.

4.5.1 Entretien de la sonde de pression

Le raccord blanc en plastique rempli d'huile de silicone agit comme un tampon entre le diaphragme du transducteur de pression et l'eau de mer. Ajoutez régulièrement de l'huile de silicone dans le réservoir situé au-dessus du transducteur.

- 1. Vérifiez si la partie supérieure du capteur est propre.
- 2. A l'aide d'une clé de 9/16", maintenez le raccord Swagelok[®] en plastique blanc.
- **3.** A l'aide d'une clé de 7/16", desserrez le capuchon situé sur la partie supérieure du raccord.
- 4. Retirez le capuchon.
- Nettoyez l'orifice du capuchon avec un fil métallique ou un cure-dent. N'insufflez pas d'air comprimé dans le raccord. Vous risquez de provoquer des éclaboussures.
- 6. Ajoutez de l'huile de silicone Dow Corning[®] 200 dans le réservoir jusqu'à ce le niveau soit visible.

Figure 9 Capuchon de sonde de pression

- 7. Remettez le capuchon en place sans trop le serrer.
- 8. Nettoyez toute trace d'huile de la surface du capteur.

4.6 Plaque de montage ECO

La plaque de montage des capteurs *ECO* est décrite en détail ci-dessous. Elle n'est pas présente sur les capteurs dotés de piles internes ou prévus pour une profondeur de 6 000 m.

Les éditions révisées du présent manuel d'utilisation sont disponibles sur le site Web du fabricant.

5.1 Garantie

Le présent capteur est garanti contre tout défaut ou vice de fabrication pour une durée d'un an à partir de la date d'achat. Cette garantie n'est pas valide en cas d'utilisation incorrecte du capteur ou de négligence entraînant des dommages non imputables à l'usure normale des déploiements.

5.2 Service après-vente et assistance

Le fabricant recommande le retour des capteurs à l'usine une fois par an, afin d'assurer leur nettoyage, étalonnage et maintenance ordinaire.

Consultez le site Web pour les FAQ et les remarques techniques ou contactez le fabricant pour obtenir de l'assistance à l'adresse suivante :

support@wetlabs.com

les couches ablatives, etc.

Pour renvoyer un capteur au fabricant, procédez de la façon suivante :

- Prenez contact avec le fabricant pour obtenir un numéro d'autorisation de retour de marchandise (RMA).
 Remarque : Le fabricant décline toute responsabilité quant aux éventuels dommages causés au capteur pendant le transport jusqu'à l'usine.
- Eliminez toute trace de traitement antifouling appliqué au capteur avant d'expédier celui-ci au fabricant.
 Remarque : Pour le service après-vente et la réparation, le fabricant n'accepte aucun capteur traité avec des agents antifouling. Cela inclut notamment le tributylétain, la peinture antifouling,
- 3. Emballez le capteur dans le boîtier de transport rigide d'origine.
- 4. Inscrivez le numéro RMA sur le boîtier de transport et sur les documents d'expédition.
- 5. Utilisez le service de transport aérien en 3 jours pour expédier le capteur au fabricant. Evitez le transport terrestre.
- Le fabricant s'engage à fournir les pièces de rechange et la main d'œuvre nécessaires et à réexpédier, à ses frais, le capteur au client par service aérien en 3 jours.

5.3 Mise au rebut des équipements électriques et électroniques

L'équipement électrique disposant de ce symbole ne peut être mis au rebut dans les systèmes de mise au rebut publics européens. Conformément à la directive 2002/96/CE, les appareils électriques doivent être, à la fin de leur service, renvoyés par les utilisateurs au fabricant, qui se chargera de les éliminer à ses frais. Pour le recyclage, veuillez contacter le fabricant pour savoir comment retourner l'appareil, les accessoires fournis par le fabricant et les éléments accessoires arrivés en fin de vie.

WET Labs, Inc. P.O. Box 518 Philomath, OR 97370 U.S.A. Tel. (541) 929-5650 Fax (541) 929-5277 www.wetlabs.com

 $^{\mbox{\scriptsize C}}$ WET Labs, Inc. , 2013. Tous droits réservés.